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We discuss the finite element approximation of eigenvalue problems associated
with compact operators. While the main emphasis is on symmetric problems,
some comments are present for non-self-adjoint operators as well. The topics
covered include standard Galerkin approximations, non-conforming approx-
imations, and approximation of eigenvalue problems in mixed form. Some
applications of the theory are presented and, in particular, the approxima-
tion of the Maxwell eigenvalue problem is discussed in detail. The final part
tries to introduce the reader to the fascinating setting of differential forms and
homological techniques with the description of the Hodge–Laplace eigenvalue
problem and its mixed equivalent formulations. Several examples and numer-
ical computations complete the paper, ranging from very basic exercises to
more significant applications of the developed theory.
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1. Introduction

The aim of this paper is to provide the reader with an overview of the state
of the art in the numerical analysis of the finite element approximation of
eigenvalue problems arising from partial differential equations.

The work consists of four parts, which are ordered according to their
increasing difficulty. The material is arranged in such a way that it should
be possible to use it (or part of it) as a reference for a graduate course.

Part 1 presents several examples and reports on some academic numerical
computations. The results presented range from a very basic level (such
as the approximation of the one-dimensional Laplace operator), suited to
those just starting work in this subject, to more involved examples. In
particular, we give a comprehensive review of the Galerkin approximation
of the Laplace eigenvalue problem (also in the presence of a singular domain
and of non-conforming schemes), of the mixed approximation of the Laplace
eigenvalue problem (with stable or unstable schemes), and of the Maxwell
eigenvalue problem. Some of the presented material is new, in particular, the
numerical results for the one-dimensional mixed Laplacian with the P1−P1

and the P2 − P0 scheme.
Part 2 contains the main core of the theory concerning the Galerkin ap-

proximation of variationally posed eigenvalue problems. With a didactic
purpose, we included a direct proof of convergence for the eigenvalues and
eigenfunctions of the Laplace equation approximated with piecewise linear
elements. By direct proof, we mean a proof which does not make use of the
abstract spectral approximation theory, but is based on basic properties of
the Rayleigh quotient. This proof is not new, but particular care has been
paid to the analysis of the case of multiple eigenfunctions. In Section 9 we
describe the so-called Babuška–Osborn theory. As an example of application
we analyse the approximation of the eigensolutions of an elliptic operator.
Then, we provide another application which involves the non-conforming
Crouzeix–Raviart element for the approximation of the Laplace eigenvalue
problem. The results of this section are probably not new, but we could not
find a reference providing a complete analysis of this form.

Part 3 is devoted to the approximation theory of eigenvalue problems in
mixed form. We recall that the natural conditions for the well-posedness
and stability of source mixed problems (the classical inf-sup conditions) are
not good hypotheses for convergence of the eigensolutions. It is standard to
consider two different mixed formulations: problems of the first type (also
known as (f, 0) problems) and of the second type (0, g). The first family is
used, for instance, when the Stokes system is considered, and an example of
an application for the second one is the mixed Laplace eigenvalue problem.
The sufficient and necessary conditions for the convergence of eigenvalues
and eigenfunctions of either type of mixed problem are discussed.
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Finally, Part 4 deals with the homological techniques which lead to the
finite element exterior calculus. We recall the Hodge–Laplace eigenvalue
problem and show the links between this problem in the language of differ-
ential forms and standard eigenvalue problems for differential operators. In
particular, we study the Maxwell eigenvalue problem and discuss the main
tools for its analysis.

In a project like this one, it is responsibility of the author to make some
choices about the material to be included. We acknowledge that we would
have added some more subjects, but finally we had to trim our original
plan. In particular, we completely ignored the topic of a posteriori and
adaptive error analysis for eigenvalue problems. For this active and funda-
mental research field the reader is referred to the following papers and to the
references therein: Hackbusch (1979), Larson (2000), Morin, Nochetto and
Siebert (2000), Heuveline and Rannacher (2001), Neymeyr (2002), Durán,
Padra and Rodŕıguez (2003), Gardini (2004), Carstensen (2008), Giani and
Graham (2009), Grubǐsić and Ovall (2009) and Garau, Morin and Zuppa
(2009). The p and hp version of finite elements is pretty much related to this
topic: we give some references on this issue in Section 20 for the approxima-
tion of Maxwell’s eigenvalue problem. Another area that deserves attention
is the discontinuous Galerkin approximation of eigenvalue problems. We
refer to the following papers and to the references therein: Hesthaven and
Warburton (2004), Antonietti, Buffa and Perugia (2006), Buffa and Pe-
rugia (2006), Warburton and Embree (2006), Creusé and Nicaise (2006),
Buffa, Houston and Perugia (2007) and Brenner, Li and Sung (2008). Non-
standard approximations, including mimetic schemes (Cangiani, Gardini
and Manzini 2010), have not been discussed. Another important result we
did not include deals with the approximation of non-compact operators (De-
scloux, Nassif and Rappaz 1978a, 1978b). It is interesting to note that such
results have often been used for the analysis of the non-conforming approx-
imation of compact operators and, in particular, of the approximation of
Maxwell’s eigenvalue problem.

Throughout this paper we quote in each section the references we need.
We tried to include all significant references we were aware of, but obviously
many others have not been included. We apologize for that in advance and
encourage all readers to inform the author about results that would have
deserved more discussion.
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PART ONE

Some preliminary examples

In this section we discuss some numerical results concerning the finite ele-
ment approximation of eigenvalue problems arising from partial differential
equations. The presented examples provide motivation for the rest of this
survey and will be used for the applications of the developed theory. We
only consider symmetric eigenvalue problems, so we are looking for real
eigenvalues.

2. The one-dimensional Laplace eigenvalue problem

We start with a very basic and well-known one-dimensional example. Let Ω
be the open interval ]0, π[ and consider the problem of finding eigenvalues
λ and eigenfunctions u with u �= 0 such that

−u′′(x) = λu(x) in Ω, (2.1a)
u(0) = u(π) = 0. (2.1b)

It is well known that the eigenvalues are given by the squares of the in-
teger numbers λ = 1, 4, 9, 16, . . . and that the corresponding eigenspaces
are spanned by the eigenfunctions sin(kx) for k = 1, 2, 3, 4 . . . . A standard
finite element approximation of problem (2.1) is obtained by considering a
suitable variational formulation. Given V = H1

0 (Ω), multiplying our equa-
tion by v ∈ V , and integrating by parts, yields the following: find λ ∈ R

and a non-vanishing u ∈ V such that∫ π

0
u′(x)v′(x) dx = λ

∫ π

0
u(x)v(x) dx ∀v ∈ V. (2.2)

A Galerkin approximation of this variational formulation is based on a finite-
dimensional subspace Vh = span{ϕ1, . . . , ϕN} ⊂ V , and consists in looking
for discrete eigenvalues λh ∈ R and non-vanishing eigenfunctions uh ∈ Vh

such that ∫ π

0
u′h(x)v′(x) dx = λh

∫ π

0
uh(x)v(x) dx ∀v ∈ Vh.

It is well known that this gives an algebraic problem of the form

Ax = λMx,

where the stiffness matrix A = {aij}N
i,j=1 is defined as

aij =
∫ π

0
ϕ′

j(x)ϕ
′
i(x) dx
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and the mass matrix M = {mij}N
i,j=1 is

mij =
∫ π

0
ϕj(x)ϕi(x) dx.

Given a uniform partition of [0, π] of size h, let Vh be the space of con-
tinuous piecewise linear polynomials vanishing at the end-points (standard
conforming P1 finite elements); then the associated matrices read

aij =
1
h
·


2 for i = j,
− 1 for |i− j| = 1,
0 otherwise,

mij = h ·


4/6 for i = j,
1/6 for |i− j| = 1,
0 otherwise,

with i, j = 1, . . . , N , where the dimension N is the number of internal
nodes in the interval [0, π]. It is well known that in this case it is possible
to compute the explicit eigenmodes: given k ∈ N, the kth eigenspace is
generated by the interpolant of the continuous solution

u
(k)
h (ih) = sin(kih), i = 1, . . . , N, (2.3)

and the corresponding eigenvalue is

λ
(k)
h = (6/h2)

1 − cos kh
2 + cos kh

. (2.4)

It is then immediate to deduce the optimal estimates (as h→ 0)

‖u(k) − u
(k)
h ‖V = O(h) |λ(k) − λ

(k)
h | = O(h2) (2.5)

with u(k)(x) = sin(kx) and λ(k) = k2.
We would like to make some comments about this first example. Although

here the picture is very simple and widely known, some of the observations
generalize to more complicated situations and will follow from the abstract
theory, which is the main object of this survey.

First of all, it is worth noticing that, even if not explicitly stated, esti-
mates (2.5) depend on k. In particular, the estimate on the eigenvalues can
be made more precise by observing that

λ
(k)
h = k2 + (k4/12)h2 +O(k6h4), as h→ 0. (2.6)

This property has a clear physical meaning: since the eigenfunctions present
more and more oscillations when the frequency increases, an increasingly fine
mesh is required to keep the approximation error within the same accuracy.

The second important consequence of (2.4) is that all eigenvalues are
approximated from above. This behaviour, which is related to the so-called
min-max property (see Proposition 7.2), can be stated as follows:

λ(k) ≤ λ
(k)
h ≤ λ(k) + C(k)h2.
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The first estimate in (2.5) on the convergence of the eigenfunctions re-
quires some additional comments. It is clear that the solution of the alge-
braic system arising from (2.2) does not give, in general, the eigenfunctions
described in (2.3). Since in this simple example all eigenspaces are one-
dimensional, we might expect that the numerical solver will provide us with
multiples of the functions in (2.3). It is evident that if we want to perform
an automatic error estimation, a first step will be to normalize the com-
puted eigenfunctions so that they have the same norm as the continuous
ones. This, however, is not enough, since there can be a difference in sign,
so we have to multiply them by ±1 in order for the scalar product with the
continuous eigenfunctions to be positive.

Remark 2.1. If the same eigenvalue computation is performed with Vh

equal to the space of continuous piecewise polynomials of degree at most p
and vanishing at the end-points (standard conforming Pp finite elements),
then estimates (2.5) become

‖u(k) − u
(k)
h ‖V = O(hp) |λ(k) − λ

(k)
h | = O(h2p).

In any case, the order of approximation for the eigenvalues is double with
respect to the approximation rate of the corresponding eigenfunctions. This
is the typical behaviour of symmetric eigenvalue problems.

3. Some numerical results for the two-dimensional Laplace
eigenvalue problem

In this section we present some numerical results for the Laplace eigenvalue
problem in two dimensions. We use different domains and finite elements.

Given an open Lipschitz domain Ω ⊂ R
2, we are interested in the following

problem: find eigenvalues λ and eigenfunctions u with u �= 0 such that

−∆u(x, y) = λu(x, y) in Ω, (3.1a)
u = 0 on ∂Ω. (3.1b)

Given V = H1
0 (Ω), a variational formulation of (3.1) can be obtained as

follows: find λ ∈ R and u ∈ V , with u �= 0, such that∫
Ω

gradu(x, y) · grad v(x, y) dxdy = λ

∫
Ω
u(x, y)v(x, y) dxdy ∀v ∈ V.

A Galerkin approximation based on a finite-dimensional subspace Vh ⊂ V
then reads: find λh ∈ R and uh ∈ Vh, with uh �= 0, such that∫

Ω
graduh(x, y) ·grad v(x, y) dxdy = λh

∫
Ω
uh(x, y)v(x, y) dxdy ∀v ∈ Vh.
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Figure 3.1. Sequence of unstructured meshes (N = 4, 8, 16).

3.1. The Laplace eigenvalue problem on the square:
continuous piecewise linears

Let Ω be the square ]0, π[ × ]0, π[. It is well known that the eigenvalues
of (3.1) are given by λm,n = m2 + n2 (with m and n strictly positive in-
tegers) and the corresponding eigenfunctions are um,n = sin(mx) sin(ny).
Throughout this subsection we are going to use continuous piecewise linear
finite elements on triangles.

Our first computation involves a standard sequence of regular unstruc-
tured meshes, which is shown in Figure 3.1. Table 3.1 lists the first ten
computed eigenvalues and their rate of convergence towards the exact val-
ues. It is evident that the scheme is convergent and that the convergence is
quadratic. The abstract theory we are going to present will show that the
eigenfunctions are first-order convergent in V .

Moreover, from Table 3.1 we can see behaviour similar to that observed in
the one-dimensional example: all eigenvalues are approximated from above
and the relative error increases with the rank of the eigenvalues in the
spectrum (for instance, on the finest mesh, the relative error for the 10th
eigenvalue is more than eight times the error for the first one).

This two-dimensional example allows us to make some important com-
ments on multiple eigenvalues. If we look, for instance, at the double
eigenvalue λ = 5, we see that there are two distinct discrete eigenvalues
λ

(2)
h < λ

(3)
h approximating it. Both eigenvalues are good approximations

of the exact solution, and on the finest mesh their difference is smaller
than 10−4. A natural question concerns the behaviour of the corresponding
eigenfunctions. The answer to this question is not trivial: indeed, the ex-
act eigenspace has dimension equal to 2 and it is spanned by the functions
u1,2 = sinx sin(2y) and u2,1 = sin(2x) sin y. On the other hand, since the
discrete eigenvalues are distinct, the approximating eigenspace consists of
two separate one-dimensional eigenspaces. In particular, we cannot expect
an estimate similar to the first one of (2.5) (even after normalization and
choice of the sign for each discrete eigenfunction), since there is no rea-
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Table 3.1. Eigenvalues computed on the unstructured mesh sequence.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

2 2.2468 2.0463 (2.4) 2.0106 (2.1) 2.0025 (2.1) 2.0006 (2.0)
5 6.5866 5.2732 (2.5) 5.0638 (2.1) 5.0154 (2.0) 5.0038 (2.0)
5 6.6230 5.2859 (2.5) 5.0643 (2.2) 5.0156 (2.0) 5.0038 (2.0)
8 10.2738 8.7064 (1.7) 8.1686 (2.1) 8.0402 (2.1) 8.0099 (2.0)

10 12.7165 11.0903 (1.3) 10.2550 (2.1) 10.0610 (2.1) 10.0152 (2.0)
10 14.3630 11.1308 (1.9) 10.2595 (2.1) 10.0622 (2.1) 10.0153 (2.0)
13 19.7789 14.8941 (1.8) 13.4370 (2.1) 13.1046 (2.1) 13.0258 (2.0)
13 24.2262 14.9689 (2.5) 13.4435 (2.2) 13.1053 (2.1) 13.0258 (2.0)
17 34.0569 20.1284 (2.4) 17.7468 (2.1) 17.1771 (2.1) 17.0440 (2.0)
17 20.2113 17.7528 (2.1) 17.1798 (2.1) 17.0443 (2.0)

DOF 9 56 257 1106 4573

son why, for instance, the eigenspace associated to λ
(2)
h should provide a

good approximation of u1,2. The right approach to this problem makes use
of the direct sum of the eigenspaces corresponding to λ

(2)
h and λ

(3)
h , that

is, span{u(2)
h , u

(3)
h }, which does in fact provide a good approximation to the

two-dimensional eigenspace associated with λ = 5. The definition of such an
approximation, which relies on the notion of a gap between Hilbert spaces,
will be made more precise later on. For the moment, we make explicit the
concept of convergence in this particular situation which can be stated as
follows: there exist constants α1,2(h), α2,1(h), β1,2(h) and β2,1(h) such that

‖u1,2 − α1,2(h)u
(2)
h − β1,2(h)u

(3)
h ‖V = O(h),

‖u2,1 − α2,1(h)u
(2)
h − β2,1(h)u

(3)
h ‖V = O(h).

(3.2)

It should be clear that the way u1,2 and u2,1 influence the behaviour of u(2)
h

and u
(3)
h is mesh-dependent: on the unstructured mesh sequences used for

our computations, we cannot expect the α’s and the β’s to stabilize towards
fixed numbers. In order to demonstrate this phenomenon, we display in
Figure 3.2 the computed eigenfunctions associated with λ(2)

h for N = 8, 16,
and 32. The corresponding plot for the computed eigenfunctions associated
with λ

(3)
h is shown in Figure 3.3. For the sake of comparison, the exact

eigenfunctions u1,2 and u2,1 are plotted in Figure 3.4.
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Figure 3.2. Eigenfunction associated with
λ

(2)
h on the unstructured mesh sequence.
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Figure 3.3. Eigenfunction associated with
λ

(3)
h on the unstructured mesh sequence.

Figure 3.4. Eigenfunctions u1,2 and u2,1.
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Figure 3.5. Sequence of uniform meshes (N = 4, 8, 16).
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Figure 3.6. Eigenfunctions associated with
λ

(2)
h and λ(3)

h on the uniform mesh sequence.

The situation is, however, simpler on a uniform mesh sequence. We con-
sider a mesh sequence of right-angled triangles obtained by bisecting a uni-
form mesh of squares (see Figure 3.5). Table 3.2 (overleaf) lists the first
ten computed eigenvalues and their rate of convergence towards the ex-
act values. This computation does not differ too much from the previous
one (besides the fact that the convergence order results are cleaner, since
the meshes are now uniform). In particular, the multiple eigenvalues are
approximated again by distinct discrete values. The corresponding eigen-
functions are plotted in Figure 3.6 for N = 16, where the alignment with
the mesh is clearly understood. In order to emphasize the mesh dependence,
we performed the same computation on the mesh sequence of Figure 3.7,
where the triangles have the opposite orientation from before. The com-
puted eigenvalues are exactly the same as in Table 3.2 (in particular, two
distinct eigenvalues approximate λ = 5) and the eigenfunctions correspond-
ing to the multiple eigenvalue are plotted in Figure 3.8. It is evident that
the behaviour has changed due to the change in the orientation of the mesh.
This result is not surprising since the problem is invariant under the change
of variable induced by the symmetry about the line y = π − x.
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Figure 3.7. Sequence of uniform meshes with reverse orientation (N = 4, 8, 16).
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Figure 3.8. Eigenfunctions associated with λ(2)
h

and λ(3)
h on the reversed uniform mesh sequence.

Table 3.2. Eigenvalues computed on the uniform mesh sequence.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

2 2.3168 2.0776 (2.0) 2.0193 (2.0) 2.0048 (2.0) 2.0012 (2.0)
5 6.3387 5.3325 (2.0) 5.0829 (2.0) 5.0207 (2.0) 5.0052 (2.0)
5 7.2502 5.5325 (2.1) 5.1302 (2.0) 5.0324 (2.0) 5.0081 (2.0)
8 12.2145 9.1826 (1.8) 8.3054 (2.0) 8.0769 (2.0) 8.0193 (2.0)

10 15.5629 11.5492 (1.8) 10.3814 (2.0) 10.0949 (2.0) 10.0237 (2.0)
10 16.7643 11.6879 (2.0) 10.3900 (2.1) 10.0955 (2.0) 10.0237 (2.0)
13 20.8965 15.2270 (1.8) 13.5716 (2.0) 13.1443 (2.0) 13.0362 (2.0)
13 26.0989 17.0125 (1.7) 13.9825 (2.0) 13.2432 (2.0) 13.0606 (2.0)
17 32.4184 21.3374 (1.8) 18.0416 (2.1) 17.2562 (2.0) 17.0638 (2.0)
17 21.5751 18.0705 (2.1) 17.2626 (2.0) 17.0653 (2.0)

DOF 9 49 225 961 3969
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Figure 3.9. Sequence of uniform and symmetric meshes (N = 4, 8, 16).

Table 3.3. Eigenvalues computed on the criss-cross mesh sequence.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

2 2.0880 2.0216 (2.0) 2.0054 (2.0) 2.0013 (2.0) 2.0003 (2.0)
5 5.6811 5.1651 (2.0) 5.0408 (2.0) 5.0102 (2.0) 5.0025 (2.0)
5 5.6811 5.1651 (2.0) 5.0408 (2.0) 5.0102 (2.0) 5.0025 (2.0)
8 9.4962 8.3521 (2.1) 8.0863 (2.0) 8.0215 (2.0) 8.0054 (2.0)

10 12.9691 10.7578 (2.0) 10.1865 (2.0) 10.0464 (2.0) 10.0116 (2.0)
10 12.9691 10.7578 (2.0) 10.1865 (2.0) 10.0464 (2.0) 10.0116 (2.0)
13 17.1879 14.0237 (2.0) 13.2489 (2.0) 13.0617 (2.0) 13.0154 (2.0)
13 17.1879 14.0237 (2.0) 13.2489 (2.0) 13.0617 (2.0) 13.0154 (2.0)
17 25.1471 19.3348 (1.8) 17.5733 (2.0) 17.1423 (2.0) 17.0355 (2.0)
17 38.9073 19.3348 (3.2) 17.5733 (2.0) 17.1423 (2.0) 17.0355 (2.0)

18 38.9073 19.8363 (3.5) 18.4405 (2.1) 18.1089 (2.0) 18.0271 (2.0)
20 38.9073 22.7243 (2.8) 20.6603 (2.0) 20.1634 (2.0) 20.0407 (2.0)
20 38.9073 22.7243 (2.8) 20.6603 (2.0) 20.1634 (2.0) 20.0407 (2.0)
25 38.9073 28.7526 (1.9) 25.8940 (2.1) 25.2201 (2.0) 25.0548 (2.0)
25 38.9073 28.7526 (1.9) 25.8940 (2.1) 25.2201 (2.0) 25.0548 (2.0)

DOF 25 113 481 1985 8065

Our last computation is performed on a uniform and symmetric mesh
sequence: the criss-cross mesh sequence of Figure 3.9. The results of this
computation are shown in Table 3.3. In this case the multiple eigenvalue
λ = 5 is approximated by pairs of coinciding values. The same happens
for the double eigenvalues λ = 10 (modes (1, 3) and (3, 1)) and λ = 13
(modes (2, 3) and (3, 2)), while the situation seems different for λ = 17
(modes (1, 4) and (4, 1)) in the case of the coarsest mesh N = 4. This
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Figure 3.10. Discrete eigenfunction associated to λ(9)
h

and the exact eigenfunction associated to λ(11).

behaviour can be explained as follows: the discrete value λ(9)
h = 25.1471

is indeed a (bad) approximation of the higher frequency λ(11) = 18 (mode
(3, 3)). A demonstration of this fact is given by Figure 3.10, which shows
the discrete eigenfunction associated to λ

(9)
h and the exact eigenfunction

associated to λ(11).
When h is not small enough, we cannot actually expect the order of the

discrete eigenvalues to be in a one-to-one correspondence with the contin-
uous ones. For this reason, we include in Table 3.3 five more eigenvalues,
which should make the picture clearer.

3.2. The Laplace eigenvalue problem on an L-shaped domain

In all the examples presented so far, the eigenfunctions have been C∞-
functions (they were indeed analytic). We recall here a fundamental example
which shows the behaviour of eigenvalue problem approximation when the
solution is not smooth.

We consider a domain with a re-entrant corner and the sequence of un-
structured triangular meshes shown in Figure 3.11. The shape of our domain
is actually a flipped L (the coordinates of the vertices are (0, 0), (1, 0), (1, 1),
(−1, 1), (−1,−1), and (0,−1)), since we use as reference solutions the values
proposed in Dauge (2003) where this domain has been considered. In order
to compare with the results in the literature, we compute the eigenvalues
for the Neumann problem,

−∆u(x, y) = λu(x, y) in Ω,
∂u

∂n
= 0 on ∂Ω,
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Figure 3.11. Sequence of unstructured mesh
for the L-shaped domain (N = 4, 8, 16).

Table 3.4. Eigenvalues computed on the L-shaped domain (unstructured mesh
sequence).

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

0 −0.0000 0.0000 −0.0000 −0.0000 −0.0000
1.48 1.6786 1.5311 (1.9) 1.4946 (1.5) 1.4827 (1.4) 1.4783 (1.4)
3.53 3.8050 3.5904 (2.3) 3.5472 (2.1) 3.5373 (2.0) 3.5348 (2.0)
9.87 12.2108 10.2773 (2.5) 9.9692 (2.0) 9.8935 (2.1) 9.8755 (2.0)
9.87 12.5089 10.3264 (2.5) 9.9823 (2.0) 9.8979 (2.0) 9.8767 (2.0)

11.39 13.9526 12.0175 (2.0) 11.5303 (2.2) 11.4233 (2.1) 11.3976 (2.1)

DOF 20 65 245 922 3626

using the following variational formulation: find λ ∈ R and u ∈ V , with
u �= 0, such that∫

Ω
gradu(x, y) · grad v(x, ) dxdy = λ

∫
Ω
u(x, y)v(x, y) dxdy ∀v ∈ V,

with V = H1(Ω).
The results of the numerical computations are shown in Table 3.4, where

we can observe the typical lower approximation rate in the presence of singu-
larities: the first eigenvalue is associated to an eigenspace of singular eigen-
functions, so that the convergence rate deteriorates; on the other hand, the
other presented eigenvalues are associated to eigenspaces of smooth func-
tions (since the domain is symmetric), and their convergence is quadratic.

As in the previous examples, we observe that all discrete eigenvalues
approximate the continuous ones from above, i.e., we have immediate upper
bounds for the exact frequencies.
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Since we are considering the Neumann problem, there is a vanishing fre-
quency. Its approximation is zero up to machine precision. In Table 3.4 we
display the computed values, rounded to four decimal places, and in some
occurrences the zero frequencies turn out to be negative.

Remark 3.1. We have chosen not to refine the mesh in the vicinity of
the re-entrant corner, since we wanted to emphasize that the convergence
rate of the eigenvalues is related to the smoothness of the corresponding
eigenfunction. The convergence in the case of singular solutions can be
improved by adding more degrees of freedom where they are needed, but
this issue is outside the aim of this work.

3.3. The Laplace eigenvalue problem on the square:
non-conforming elements

The last scheme we consider for the approximation of the problem discussed
in this section is the linear non-conforming triangular element, also known
as the Crouzeix–Raviart method. It is clear that there is an intrinsic in-
terest in studying non-conforming elements; moreover, the approximation
of mixed problems (which will be the object of the next examples and will
constitute an important part of this survey) can be considered as a sort of
non-conforming approximation.

We consider the square domain Ω = ]0, π[× ]0, π[ and compute the eigen-
values on the sequence of unstructured meshes presented in Figure 3.1. The
computed frequencies are shown in Table 3.5. As expected, we observe an
optimal quadratic convergence.

An important difference with respect to the previous computations is that
now all discrete frequencies are lower bounds for the exact solutions. In this
particular example all eigenvalues are approximated from below. This is
typical behaviour for non-conforming approximation and has been reported
by several authors. There is an active literature (see Rannacher (1979) and
Armentano and Durán (2004), for instance) on predicting whether non-
standard finite element schemes provide upper or lower bounds for eigen-
values, but to our knowledge the question has not yet been answered defini-
tively. Numerical results tend to show that the Crouzeix–Raviart method
gives values that are below the exact solutions, but so far only partial results
are available.

The general theory we are going to present says that conforming approx-
imations of eigenvalues are always above the exact solutions, while non-
conforming ones may be below. In the mixed approximations shown in the
next section there are situations where the same computation provides up-
per bounds for some eigenvalues and lower bounds for others.
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Table 3.5. Eigenvalues computed with the Crouzeix–Raviart method
(unstructured mesh sequence).

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

2 1.9674 1.9850 (1.1) 1.9966 (2.1) 1.9992 (2.0) 1.9998 (2.0)
5 4.4508 4.9127 (2.7) 4.9787 (2.0) 4.9949 (2.1) 4.9987 (2.0)
5 4.7270 4.9159 (1.7) 4.9790 (2.0) 4.9949 (2.0) 4.9987 (2.0)
8 7.2367 7.7958 (1.9) 7.9434 (1.9) 7.9870 (2.1) 7.9967 (2.0)

10 8.5792 9.6553 (2.0) 9.9125 (2.0) 9.9792 (2.1) 9.9949 (2.0)
10 9.0237 9.6663 (1.5) 9.9197 (2.1) 9.9796 (2.0) 9.9950 (2.0)
13 9.8284 12.4011 (2.4) 12.8534 (2.0) 12.9654 (2.1) 12.9914 (2.0)
13 9.9107 12.4637 (2.5) 12.8561 (1.9) 12.9655 (2.1) 12.9914 (2.0)
17 10.4013 15.9559 (2.7) 16.7485 (2.1) 16.9407 (2.1) 16.9853 (2.0)
17 11.2153 16.0012 (2.5) 16.7618 (2.1) 16.9409 (2.0) 16.9854 (2.0)

DOF 40 197 832 3443 13972

4. The Laplace eigenvalue problem in mixed form

In this section we present examples which, although classical, are proba-
bly not widely known, and which sometimes show a substantially different
behaviour from the previous examples.

4.1. The mixed Laplace eigenvalue problem in one dimension

It is classical to rewrite the Laplace problem (2.1) as a first-order system:
given Ω = ]0, π[, find eigenvalues λ and eigenfunctions u with u �= 0, such
that, for some s,

s(x) − u′(x) = 0 in Ω, (4.1a)
s′(x) = −λu(x) in Ω, (4.1b)
u(0) = u(π) = 0. (4.1c)

Remark 4.1. There are two functions involved with problem (4.1): s and
u. In the formulation of the problem, we made explicit that the eigenfunc-
tions we are interested in are the ones represented by u. This might seem a
useless remark, since of course in problem (4.1), given u, it turns out that s
is uniquely determined as its derivative, and analogously u can be uniquely
determined from s and the boundary conditions. On the other hand, this
might no longer be true for the discrete case (where the counterpart of our
problem will be a degenerate algebraic generalized eigenvalue problem). In
particular, we want to define the multiplicity of λ as the dimension of the
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space associated to the solution u; in general it might turn out that there
is more than one s associated with u, and we do not want to consider the
multiplicity of s when evaluating the multiplicity of λ.

Given Σ = H1(Ω) and U = L2(Ω), a variational formulation of the mixed
problem (4.1) reads as follows: find λ ∈ R and u ∈ U with u �= 0, such that,
for some s ∈ Σ,∫ π

0
s(x)t(x) dx+

∫ π

0
u(x)t′(x) dx = 0 ∀t ∈ Σ,∫ π

0
s′(x)v(x) = −λ

∫ π

0
u(x)v(x) dx ∀v ∈ U.

Its Galerkin discretization is based on discrete subspaces Σh ⊂ Σ and Uh ⊂
U and reads as follows: find λh ∈ R and uh ∈ Uh with uh �= 0, such that,
for some sh ∈ Σh,∫ π

0
sh(x)t(x) dx+

∫ π

0
uh(x)t′(x) dx = 0 ∀t ∈ Σh, (4.2a)∫ π

0
s′h(x)v(x) = −λh

∫ π

0
uh(x)v(x) dx ∀v ∈ Uh. (4.2b)

If Σh = span{ϕ1, . . . , ϕNs} and Uh = span{ψ1, . . . ψNu}, then we can in-
troduce the matrices A = {akl}Ns

k,l=1, MU = {mij}Nu
i,j=1 and B = {bjk}

(j = 1, . . . , Nu, k = 1, . . . , Ns) as

akl =
∫ π

0
ϕl(x)ϕk(x) dx,

mij =
∫ π

0
ψj(x)ψi(x) dx,

bjk =
∫ π

0
ϕ′

k(x)ψj(x) dx,

so that the algebraic system corresponding to (4.2) has the form(
A BT

B 0

) (
x
y

)
= −λ

(
0 0
0 M

) (
x
y

)
.

4.2. The P1 − P0 element

Given a uniform partition of [0, π] of size h, we introduce the most natu-
ral lowest-order scheme for the resolution of our problem. Observing that
Σh and Uh need to approximate H1(Ω) and L2, respectively, and taking
advantage of the experience coming from the study of the corresponding
source problem (see, for instance, Brezzi and Fortin (1991), Boffi and Lo-
vadina (1997) and Arnold, Falk and Winther (2006a)), we use continuous
piecewise linear finite elements for Σh (that is, conforming P1 elements) and
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piecewise constants for Uh (that is, standard P0). The presented element
is actually the one-dimensional counterpart of the well-known lowest-order
Raviart–Thomas scheme (see the next section for more details). If N is
the number of intervals in our decomposition of Ω, then the involved di-
mensions are Ns = N + 1 and Nu = N . In this case it is possible to
compute the eigensolutions explicitly. Given that the exact solutions are
λ(k) = k2 and u(k)(x) = sin(kx) (k = 1, 2, . . . ), we observe that we have
s(k)(x) = k cos(kx). It turns out that the approximate solution for s is
its nodal interpolant, that is, s(k)

h (ih) = k cos(kih), and that the discrete
eigenmodes are given by

λ
(k)
h = (6/h2)

1 − cos kh
2 + cos kh

, u
(k)
h |]ih,(i+1)h[ =

s
(k)
h (ih) − s

(k)
h ((i+ 1)h)

hλ
(k)
h

,

with k = 1, . . . , N .
It is quite surprising that the discrete frequencies are exactly the same

as in the first example presented in Section 2. There is actually a slight
difference in the number of degrees of freedom: here N is the number of
intervals, while in Section 2 N was the number of internal nodes, that is,
we compute one value more with the mixed scheme on the same mesh. On
the other hand, the eigenfunctions are different, as it must be, since here
they are piecewise constants while there they were continuous piecewise
linears. More precisely, it can be shown that if we consider the exact solution
u(k)(x) = sin(kx), then we have∫ (i+1)h

ih
(u(k)(x) − u

(k)
h (x)) dx =

λh − λ

λh

∫ (i+1)h

ih
u(k)(x) dx.

In particular, it turns out that u(k)
h is not the L2-projection of u(k) onto the

piecewise constants space.

4.3. The P1 − P1 element

It is well known that the P1−P1 element is not stable for the approximation
of the one-dimensional Laplace source problem (Babuška and Narasimhan
1997). In particular, it has been shown that it produces acceptable results
for smooth solutions, although it is not convergent in the case of singular
data. Even though the eigenfunctions of the problem we consider are regular
(indeed, they are analytic), the P1 − P1 does not give good results, as we
are going to show in this section.

Let us consider again a uniform partition of the interval [0, π] into N sub-
intervals and define both Σh and Uh as the space of continuous piecewise
linear functions (without any boundary conditions). We then have Ns =
Nu = N + 1.
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Table 4.1. Eigenvalues for the one-dimensional mixed Laplacian computed with
the P1 − P1 scheme.

Exact Computed (rate)
N = 8 N = 16 N = 32 N = 64 N = 128

0.0000 −0.0000 −0.0000 −0.0000 −0.0000
1 1.0001 1.0000 (4.1) 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0)
4 3.9660 3.9981 (4.2) 3.9999 (4.0) 4.0000 (4.0) 4.0000 (4.0)

7.4257 8.5541 8.8854 8.9711 8.9928
9 8.7603 8.9873 (4.2) 8.9992 (4.1) 9.0000 (4.0) 9.0000 (4.0)

16 14.8408 15.9501 (4.5) 15.9971 (4.1) 15.9998 (4.0) 16.0000 (4.0)
25 16.7900 24.5524 (4.2) 24.9780 (4.3) 24.9987 (4.1) 24.9999 (4.0)

38.7154 29.7390 34.2165 35.5415 35.8846
36 39.0906 35.0393 (1.7) 35.9492 (4.2) 35.9970 (4.1) 35.9998 (4.0)
49 46.7793 48.8925 (4.4) 48.9937 (4.1) 48.9996 (4.0)

Table 4.2. Eigenvalues for the one-dimensional mixed Laplacian computed with
the P1 − P1 scheme (the computed values are truncated to ten decimal places).

Exact Computed (rate)
N = 1000

−0.0000000000
1 1.0000000000
4 3.9999999999

8.9998815658
9 8.9999999992

16 15.9999999971
25 24.9999999784

35.9981051039
36 35.9999999495
49 48.9999998977
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Figure 4.1. Eigenfunction uh associated to λh = 0.

The results of the numerical computation for increasing N are listed in
Table 4.1. The obtained results need some comments. First of all, it is clear
that the correct values are well approximated: the rate of convergence is
four, meaning that the scheme is of second order (since the rate convergence
of the eigenvalues for symmetric eigenproblems, as seen in the previous
examples, is doubled). On the other hand, there are some spurious solutions
which we now describe in more detail.

The zero discrete frequency is related to the fact that the scheme does not
satisfy the inf-sup condition. The corresponding eigenfunctions are sh(x) ≡
0 and uh(x), as represented in Figure 4.1 in the case N = 10. The function
uh is orthogonal in L2(0, π) to all derivatives of functions in Σh, and the
existence of uh in this case shows, in particular, that this scheme does not
satisfy the classical inf-sup condition. We remark that λh = 0 is a true
eigenvalue of our discrete problem even if the corresponding function sh is
vanishing, since the eigenfunction that interests us is uh (see Remark 4.1).

Besides the zero frequency, there are other spurious solutions: the first one
ranges between 7.4257 and 8.9928 in the computations shown in Table 4.1,
and is increasing as N increases. Unfortunately, this spurious frequency
remains bounded and seems to converge to 9 (which implies the wrong
discrete multiplicity for the exact eigenvalue λ = 9), as is shown in Table 4.2,
where we display the results of the computation for N = 1000. The same
situation occurs for the other spurious value of Tables 4.1 and 4.2, which
seems to converge to a value close to 36. The situation is actually more
complicated and intriguing: the eigenvalues in the discrete spectrum with
rank multiple of four seem spurious, and apparently converge to the value of
the next one, that is, λ(4k)

h → λ(3k) = (3k)2 for k = 0, 1, . . . . The numerically
evaluated order of convergence of the spurious frequencies towards (3k)2 is 2.
The eigenfunctions corresponding to λ(4)

h and λ(8)
h are shown in Figure 4.2.
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Figure 4.2. P1 − P1 spurious eigenfunctions corresponding to λ(4)
h

(above, N = 20) and λ(8)
h (below, N = 30); uh (left) and sh (right).

4.4. The P2 − P0 element

We now discuss briefly the P2 − P0 element, which is known to be unsta-
ble for the corresponding source problem (Boffi and Lovadina 1997). The
results of the numerical computations on a sequence of successively refined
meshes are listed in Table 4.3. In this case there are no spurious solutions,
but the computed eigenvalues are wrong by a factor of 6. More precisely,
they converge nicely towards six times the exact solutions. The eigenfunc-
tions corresponding to the first two eigenvalues are shown in Figure 4.3:
they exhibit behaviour analogous to that observed in the literature for the
source problem.

In particular, it turns out that the eigenfunctions uh are correct approxi-
mations of u, while the functions sh contain spurious components which are
clearly associated with a bubble in each element. This behaviour is related
to the fact that the ellipticity in the discrete kernel is not satisfied for the
presence of the bubble functions in the space P2. In the case of the source
problem, we observed a similar behaviour for sh, while uh was a correct
approximation of a multiple of u. Here we do not have this phenomenon for
uh since the eigenfunctions are normalized.
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Figure 4.3. P2 −P0 eigenfunctions corresponding to the first (above)
and the second (below) discrete value; uh (left) and sh (right).

Table 4.3. Eigenvalues for the one-dimensional mixed Laplacian computed with
the P2 − P0 scheme.

Exact Computed (rate with respect to 6λ)
N = 8 N = 16 N = 32 N = 64 N = 128

1 5.7061 5.9238 (1.9) 5.9808 (2.0) 5.9952 (2.0) 5.9988 (2.0)
4 19.8800 22.8245 (1.8) 23.6953 (1.9) 23.9231 (2.0) 23.9807 (2.0)
9 36.7065 48.3798 (1.6) 52.4809 (1.9) 53.6123 (2.0) 53.9026 (2.0)

16 51.8764 79.5201 (1.4) 91.2978 (1.8) 94.7814 (1.9) 95.6925 (2.0)
25 63.6140 113.1819 (1.2) 138.8165 (1.7) 147.0451 (1.9) 149.2506 (2.0)
36 71.6666 146.8261 (1.1) 193.5192 (1.6) 209.9235 (1.9) 214.4494 (2.0)
49 76.3051 178.6404 (0.9) 253.8044 (1.5) 282.8515 (1.9) 291.1344 (2.0)
64 77.8147 207.5058 (0.8) 318.0804 (1.4) 365.1912 (1.8) 379.1255 (1.9)
81 232.8461 384.8425 (1.3) 456.2445 (1.8) 478.2172 (1.9)

100 254.4561 452.7277 (1.2) 555.2659 (1.7) 588.1806 (1.9)
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4.5. The mixed Laplace eigenvalue problem in two and three space
dimensions

Given a domain Ω ∈ R
n (n = 2, 3), the Laplace eigenproblem can be for-

mulated as a first-order system in the following way:

σ − gradu = 0 in Ω,
div σ = −λu in Ω,

u = 0 on ∂Ω,

where we introduced the additional variable σ = gradu. A variational
formulation considers the spaces Σ = H(div; Ω) and U = L2(Ω) and reads
as follows: find λ ∈ R and u ∈ U , with u �= 0, such that, for some σ ∈ Σ,∫

Ω
σ · τ dx +

∫
Ω
u div τ dx = 0 ∀τ ∈ Σ, (4.3a)∫

Ω
div σv dx = −λ

∫
Ω
uv dx ∀v ∈ U. (4.3b)

The Galerkin approximation of our problem consists in choosing finite
dimensional subspaces Σh ⊂ Σ and Uh ⊂ U and in solving the following
discrete problem: find λh ∈ R and uh ∈ Uh, with uh �= 0 such that, for some
σh ∈ Σh, ∫

Ω
σh · τ dx +

∫
Ω
uh div τ dx = 0 ∀τ ∈ Σh,∫

Ω
div σhv dx = −λh

∫
Ω
uhv dx ∀v ∈ Uh.

The algebraic structure of the discrete system is the same as that pre-
sented in the one-dimensional case:(

A BT

B 0

) (
x
y

)
= −λ

(
0 0
0 M

) (
x
y

)
,

where M is a symmetric positive definite matrix.

4.6. Raviart–Thomas elements

We shall use the Raviart–Thomas (RT) elements, which provide the most
natural scheme for the approximation of our problem. Similar comments
apply to other well-known mixed finite elements, such as Brezzi–Douglas–
Marini (BDM) or Brezzi–Douglas–Fortin–Marini (BDFM). We refer the in-
terested reader to Brezzi and Fortin (1991) for a thorough introduction to
this subject, and to Raviart and Thomas (1977), Brezzi, Douglas and Marini
(1985), and Brezzi, Douglas, Fortin and Marini (1987b) for the original
definitions.
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Table 4.4. Eigenvalues computed with lowest-order RT elements on the uniform
mesh sequence of squares.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

2 2.1048 2.0258 (2.0) 2.0064 (2.0) 2.0016 (2.0) 2.0004 (2.0)
5 5.9158 5.2225 (2.0) 5.0549 (2.0) 5.0137 (2.0) 5.0034 (2.0)
5 5.9158 5.2225 (2.0) 5.0549 (2.0) 5.0137 (2.0) 5.0034 (2.0)
8 9.7268 8.4191 (2.0) 8.1033 (2.0) 8.0257 (2.0) 8.0064 (2.0)

10 13.8955 11.0932 (1.8) 10.2663 (2.0) 10.0660 (2.0) 10.0165 (2.0)
10 13.8955 11.0932 (1.8) 10.2663 (2.0) 10.0660 (2.0) 10.0165 (2.0)
13 17.7065 14.2898 (1.9) 13.3148 (2.0) 13.0781 (2.0) 13.0195 (2.0)
13 17.7065 14.2898 (1.9) 13.3148 (2.0) 13.0781 (2.0) 13.0195 (2.0)
17 20.5061 20.1606 (0.1) 17.8414 (1.9) 17.2075 (2.0) 17.0517 (2.0)
17 20.5061 20.4666 (0.0) 17.8414 (2.0) 17.2075 (2.0) 17.0517 (2.0)

DOF 16 64 256 1024 4096

The RT space is used for the approximation of Σ. One of the main
properties is that the finite element space consists of vector fields that are
not globally continuous, but only conforming in H(div; Ω). This is achieved
by requiring the normal component of the vector to be continuous across
the elements, and the main tool for achieving this property is the so-called
Piola transform, from the reference to the physical element. The space
U is approximated by div(Σh). In the case of lowest-order elements, in
particular, the space Uh is P0. We refer to Brezzi and Fortin (1991) for
more details. We performed the computation on a square domain Ω = ]0, π[2

using a sequence of uniform meshes of squares (the parameter N refers to
the number of subdivisions of each side). The results of the computations by
means of lowest-order RT elements are displayed in Table 4.4. The number
of degrees of freedom is evaluated in terms of the variable uh, since this
is the dimension of the algebraic eigenvalue problem to be solved (in this
case equal to the number of elements, since uh is approximated by piecewise
constants). From the computed values we can observe that the convergence
is quadratic and that all eigenvalues are approximated from above.

The same computation is then performed on a sequence of unstructured
triangular meshes such as that presented in Figure 3.1. The results are
shown in Table 4.5. In this case the situation is less clear. The theoreti-
cal estimates we present again show second order of convergence in h; the
reported values, however, even if they are clearly and rapidly converging,
are not exactly consistent with the theoretical bound. The reason is that
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Table 4.5. Eigenvalues computed with lowest-order RT elements on the
unstructured mesh sequence of triangles.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

2 2.0138 1.9989 (3.6) 1.9997 (1.7) 1.9999 (2.7) 2.0000 (2.8)
5 4.8696 4.9920 (4.0) 5.0000 (8.0) 4.9999 ( 2.1) 5.0000 (3.7)
5 4.8868 4.9952 (4.5) 5.0006 (3.0) 5.0000 (5.8) 5.0000 (2.6)
8 8.6905 7.9962 (7.5) 7.9974 (0.6) 7.9995 (2.5) 7.9999 (2.2)

10 9.7590 9.9725 (3.1) 9.9980 (3.8) 9.9992 (1.3) 9.9999 (3.2)
10 11.4906 9.9911 (7.4) 10.0007 (3.7) 10.0005 (0.4) 10.0001 (2.4)
13 11.9051 12.9250 (3.9) 12.9917 (3.2) 12.9998 (5.4) 12.9999 (1.8)
13 12.7210 12.9631 (2.9) 12.9950 (2.9) 13.0000 (7.5) 13.0000 (1.1)
17 13.5604 16.8450 (4.5) 16.9848 (3.4) 16.9992 (4.3) 16.9999 (2.5)
17 14.1813 16.9659 (6.4) 16.9946 (2.7) 17.0009 (2.6) 17.0000 (5.5)

DOF 32 142 576 2338 9400

Table 4.6. Eigenvalues computed with lowest-order RT elements on the uniform
mesh sequence of triangles of Figure 3.5.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

2 2.0324 2.0084 (1.9) 2.0021 (2.0) 2.0005 (2.0) 2.0001 (2.0)
5 4.8340 4.9640 (2.2) 4.9912 (2.0) 4.9978 (2.0) 4.9995 (2.0)
5 5.0962 5.0259 (1.9) 5.0066 (2.0) 5.0017 (2.0) 5.0004 (2.0)
8 8.0766 8.1185 ( 0.6) 8.0332 (1.8) 8.0085 (2.0) 8.0021 (2.0)

10 8.9573 9.7979 (2.4) 9.9506 (2.0) 9.9877 (2.0) 9.9969 (2.0)
10 9.4143 9.8148 (1.7) 9.9515 (1.9) 9.9877 (2.0) 9.9969 (2.0)
13 11.1065 12.8960 (4.2) 12.9828 (2.6) 12.9962 (2.2) 12.9991 (2.0)
13 11.3771 13.4216 (1.9) 13.1133 (1.9) 13.0287 (2.0) 13.0072 (2.0)
17 12.2424 16.1534 (2.5) 16.7907 (2.0) 16.9474 (2.0) 16.9868 (2.0)
17 14.7292 16.1963 (1.5) 16.7992 (2.0) 16.9495 (2.0) 16.9874 (2.0)

DOF 32 128 512 2048 8192
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RT elements are quite sensitive to the orientation of the mesh. A clean
convergence order can be obtained by using a uniform refinement strategy,
as in the mesh sequence of Figure 3.5. The results of this computation are
listed in Table 4.6

It is interesting to note that in this case the eigenvalues may be approxi-
mated from above or below. Even the same eigenvalue can present numerical
lower or upper bounds depending on the chosen mesh.

5. The Maxwell eigenvalue problem

Maxwell’s eigenvalue problem can be written as follows by means of Ampère
and Faraday’s laws: given a domain Ω ∈ R

3, find the resonance frequencies
ω ∈ R

3 (with ω �= 0) and the electromagnetic fields (E,H) �= (0, 0) such
that

curlE = iωµH in Ω,
curlH = −iωεE in Ω,
E × n = 0 on ∂Ω,
H · n = 0 on ∂Ω,

where we assumed perfectly conducting boundary conditions, and ε and µ
denote the dielectric permittivity and magnetic permeability, respectively.

From the assumption ω �= 0 it is well known that we get the usual diver-
gence equations,

div εE = 0 in Ω,
divµH = 0 in Ω.

For the sake of simplicity, we consider the material properties ε and µ
constant and equal to the identity matrix. It is outside the scope of this
work to consider more general cases; it is remarkable, however, that major
mathematical challenges arise even in this simpler situation.

The classical formulation of the eigenvalue problem is obtained from the
Maxwell system by eliminating H (we let u denote the unknown eigenfunc-
tion E): find ω ∈ R and u �= 0 such that

curl curl u = ω2u in Ω, (5.1a)
div u = 0 in Ω, (5.1b)
u × n = 0 on ∂Ω. (5.1c)

A standard variational formulation of problem (5.1) reads as follows: find
ω ∈ R and u ∈ H0(curl; Ω) with u �= 0 such that

(curl u, curl v) = ω2(u,v) ∀v ∈ H0(curl; Ω), (5.2a)

(u,gradϕ) = 0 ∀ϕ ∈ H1
0 (Ω), (5.2b)
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where, as usual, the space H0(curl; Ω) consists of vector fields in L2(Ω)3

with curl in L2(Ω)3, and with vanishing tangential trace on the boundary.
Here H1

0 (Ω) is the standard Sobolev space of functions in L2(Ω) with grad
in L2(Ω)3, and vanishing trace on the boundary.

It is a common practice to consider the following variational formulation
for the approximation of problem (5.1): find ω ∈ R and u ∈ H0(curl; Ω)
with u �= 0 such that

(curl u, curl v) = ω2(u,v) ∀v ∈ H0(curl; Ω). (5.3)

It is easy to observe that the eigenmodes of (5.3) corresponding to non-
vanishing frequencies ω �= 0 are also solutions to problem (5.2): it is suffi-
cient to choose v = gradϕ in (5.3) in order to obtain the second equation
of (5.2). When the domain is simply connected, these are the only solutions
to problem (5.2): ω = 0 in (5.2) implies curl u = 0 which, together with
div u = 0 and the boundary conditions, means u = 0 if the cohomology is
trivial. On the other hand, if there exist non-vanishing vector fields u with
curl u = 0, div u = 0 in Ω, and u× n on ∂Ω (harmonic vector fields), then
problem (5.2) has solutions with zero frequency ω = 0. These solutions are
obviously also present in problem (5.3): in this case the eigenspace corre-
sponding to the zero frequency is made of the harmonic vector fields plus
the infinite-dimensional space grad(H1

0 (Ω)). It is well known that the space
of harmonic vector fields is finite-dimensional, its dimension being the first
Betti number of Ω.

From now on we assume that Ω is simply connected, and discuss some nu-
merical approximations of the two-dimensional counterpart of problem (5.3).

Following Boffi, Fernandes, Gastaldi and Perugia (1999b), it is not difficult
to check that problem (5.2) is equivalent to the following: find λ ∈ R and
p ∈ H0(div0; Ω) with p �≡ 0 such that, for some σ ∈ H0(curl; Ω),

(σ, τ ) + (p, curl τ ) = 0 ∀τ ∈ H0(curl; Ω), (5.4a)

(curlσ,q) = −λ(p,q) ∀q ∈ H0(div0; Ω), (5.4b)

where H0(div0; Ω) denotes the subspace of H0(div; Ω) consisting of diver-
gence-free vector fields and where the equivalence is given by λ = ω2, σ = u,
and p = − curlσ/λ. The main property used for the proof of equivalence
is that H0(div0; Ω) coincides with curl(H0(curl; Ω)).

A Galerkin discretization of Maxwell’s eigenproblem usually involves a
sequence of finite-dimensional subspaces Σh ⊂ H0(curl; Ω) so that the ap-
proximate formulation reads as follows: find ωh ∈ R and uh ∈ Σh with
uh �= 0 such that

(curl uh, curl v) = ω2
h(uh,v) ∀v ∈ Σh. (5.5)
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The discretization of (5.4) requires two sequences of finite element spaces
Σh ⊂ H0(curl; Ω) and Uh ⊂ H0(div0; Ω), so that the discrete problem
reads as follows: find λh ∈ R and ph ∈ Uh with ph �≡ 0 such that, for some
σh ∈ Σh,

(σh, τ ) + (ph, curl τ ) = 0 ∀τ ∈ Σh, (5.6a)
(curlσh,q) = −λh(ph,q) ∀q ∈ Uh. (5.6b)

Boffi et al. (1999b) showed that, under the assumption

curl(Σh) = Uh,

the same equivalence holds at the discrete level as well: more precisely,
all positive frequencies of (5.5) correspond to solutions of (5.6) with the
identifications λh = ω2

h, σh = uh and ph = − curlσh/λh.
Another mixed formulation associated with Maxwell’s eigenproblem was

introduced in Kikuchi (1987): find λ ∈ R and u ∈ H0(curl; Ω) with u �= 0
such that, for some ψ ∈ H1

0 (Ω),

(curl u, curl v) + (gradψ,v) = λ(u,v) ∀v ∈ H0(curl; Ω), (5.7a)

(u,gradϕ) = 0 ∀ϕ ∈ H1
0 (Ω). (5.7b)

We shall discuss in Section 17 the analogies between the two proposed mixed
formulations.

We conclude this preliminary discussion of Maxwell’s eigenvalues with a
series of two-dimensional numerical results.

5.1. Approximation of Maxwell’s eigenvalues on triangular meshes

The two-dimensional counterpart of (5.3) reads as follows: find ω ∈ R and
u ∈ H0(rot; Ω) with u �= 0 such that

(rotu, rotv) = ω2(u,v) ∀v ∈ H0(rot; Ω), (5.8)

where we used the operator

rotv =
∂v2
∂x1

− ∂v1
∂x2

= −div(v⊥).

Its discretization involves a finite-dimensional subspace Σh ⊂ H0(rot; Ω)
and reads as follows: find ωh ∈ R and uh ∈ Σh with uh �= 0 such that

(rotuh, rotv) = ω2
h(uh,v) ∀v ∈ Σh. (5.9)

The analogous formulation of (5.4) is as follows: find λ ∈ R and p ∈
rot(H0(rot; Ω)) = L2

0(Ω) with p �≡ 0 such that, for some σ ∈ H0(rot; Ω),

(σ, τ ) + (p, rot τ ) = 0 ∀τ ∈ H0(rot; Ω), (5.10a)

(rot σ, q) = −λ(p, q) ∀q ∈ L2
0(Ω), (5.10b)

where L2
0(Ω) is the subspace of L2(Ω) of zero mean-valued functions.
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Table 5.1. Eigenvalues computed with lowest-order edge elements on the
uniform mesh sequence of triangles of Figure 3.5.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

1 0.9702 0.9923 (2.0) 0.9981 (2.0) 0.9995 (2.0) 0.9999 (2.0)
1 0.9960 0.9991 (2.2) 0.9998 (2.1) 0.9999 (2.0) 1.0000 (2.0)
2 2.0288 2.0082 (1.8) 2.0021 (2.0) 2.0005 (2.0) 2.0001 (2.0)
4 3.7227 3.9316 (2.0) 3.9829 (2.0) 3.9957 (2.0) 3.9989 (2.0)
4 3.7339 3.9325 (2.0) 3.9829 (2.0) 3.9957 (2.0) 3.9989 (2.0)
5 4.7339 4.9312 (2.0) 4.9826 (2.0) 4.9956 (2.0) 4.9989 (2.0)
5 5.1702 5.0576 (1.6) 5.0151 (1.9) 5.0038 (2.0) 5.0010 (2.0)
8 7.4306 8.1016 (2.5) 8.0322 (1.7) 8.0084 (1.9) 8.0021 (2.0)
9 7.5231 8.6292 (2.0) 8.9061 (2.0) 8.9764 (2.0) 8.9941 (2.0)
9 7.9586 8.6824 (1.7) 8.9211 (2.0) 8.9803 (2.0) 8.9951 (2.0)

zeros 9 49 225 961 3969

DOF 40 176 736 3008 12160

Since the operators rot and div are isomorphic, formulation (5.10) is in-
deed equivalent to a Neumann problem for the Laplace operator: find λ ∈ R

and p ∈ L2
0(Ω)) with p �≡ 0 such that, for some σ ∈ H0(div; Ω),

(σ, τ ) + (p,div τ ) = 0 ∀τ ∈ H0(div; Ω),

(div σ, q) = −λ(p, q) ∀q ∈ L2
0(Ω)),

where the difference with respect to formulation (4.3) is in the boundary
conditions, i.e., H(div; Ω) is replaced by H0(div; Ω) and, consistently in
order to have div(Σ) = U , L2(Ω) is replaced by L2

0(Ω).
For theoretical results on problems analogous to (5.3) and (5.8) involving

the divergence operator, we refer the interested reader to Bermúdez and
Rodŕıguez (1994) and Bermúdez et al. (1995).

The most natural discretization of problem (5.8) makes use of the so-
called edge finite elements (Nédélec 1980, 1986). In two space dimensions,
edge finite elements are simply standard finite elements used in mixed for-
mulations for the approximation of H(div; Ω) (such as RT elements, already
seen in the approximation of mixed Laplace eigenvalue problem), rotated
by the angle π/2. The name ‘edge finite elements’ comes from the nature
of the degrees of freedom which, for lowest-order approximation, are associ-
ated to moments along the edges of the triangulation. Table 5.1 displays the
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Figure 5.1. First 50 discrete eigenvalues computed with
piecewise linears on the unstructured mesh (N = 4, 8, 16).
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Figure 5.2. Some eigenvalues computed with piecewise
linears on the unstructured mesh for N = 16.

results of the computation on the square ]0, π[2 on a sequence of unstruc-
tured triangular meshes as in Figure 3.1 with lowest-order edge elements.

Remark 5.1. An important feature of edge element approximation of
problem (5.3) is that the zero frequency is approximated by discrete val-
ues that are exactly equal to zero (up to machine precision). In the case
of lowest-order edge elements, the number of zero frequencies (shown in
Table 5.1) is equal to the number of internal vertices of the mesh. This is
due to the fact that the elements of Σh with vanishing rot coincide with
gradients of piecewise linear functions in H1

0 (Ω).

There have been several attempts to solve problem (5.5) with nodal finite
elements, that is, standard finite elements in each component with degrees
of freedom associated to nodal values. It was soon realized that simula-
tions performed with standard piecewise linears are very sensitive to the
used mesh. Figure 5.1 shows the results obtained on the sequence of un-
structured triangular meshes of Figure 3.1 with continuous piecewise linear
elements in each component. The obtained results can by no means give
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Figure 5.3. Eigenfunctions computed with piecewise
linears on the unstructured mesh for N = 16.

76 77 78

Figure 5.4. More eigenfunctions computed with piecewise
linears on the unstructured mesh for N = 16.
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Figure 5.5. Sequence of compatible meshes where
gradients are well represented (N = 2, 4, 8).

an indication of the exact values. In particular, it is clear that the zero fre-
quency is not well approximated, and it seems that bad approximations of
the zero frequency pollute the whole spectrum. Indeed, it can be observed
(Boffi et al. 1999b) that the correct values are well approximated together
with their eigenfunctions, but their approximations are hardly distinguish-
able from the spurious solutions. Figure 5.2 shows the eigenvalues in the
range [50, 110] of the spectrum computed with the mesh for N = 16. The
eigenvalues plotted with different markers are good approximations to the
exact solutions. We display some eigenfunctions in Figures 5.3 and 5.4. The
different behaviour of the eigenfunctions corresponding to good approxima-
tions of the exact solutions and other eigenfunctions can be easily observed.

In view of Remark 5.1, it is clear that a crucial property is that enough
gradients are given in the finite element space: this will ensure that the zero
frequency is exactly approximated by vanishing discrete eigenvalues. A
strategy for designing meshes for which such conditions are satisfied when
using piecewise linear elements has been proposed by Wong and Cendes
(1988). A sequence of such meshes is plotted in Figure 5.5 and the com-
puted eigenvalues are listed in Table 5.2. It turns out that now several
vanishing discrete values correspond to the zero frequency, and that the
positive frequencies are optimally approximated.

A rigorous proof of this last statement is not yet available, and for a
while there have been researchers who believed that good approximation
of the infinite-dimensional kernel was a sufficient condition for the conver-
gence of the eigenmodes. On the other hand, the use of edge elements
has to be preferred with respect to nodal elements whenever possible. In
order to convince the reader that apparently good results do not necessar-
ily turn out to be correct results, we recall the counter-example presented
in Boffi et al. (1999b). It is actually well known that gradients are well
represented by piecewise linears on the criss-cross mesh sequence of Fig-
ure 3.9. This is a consequence of results on contour plotting (Powell 1974).
The eigenvalues computed with formulation (5.5) using piecewise linears



34 D. Boffi

Table 5.2. Eigenvalues computed with nodal elements on the compatible mesh
sequence of triangles of Figure 5.5.

Exact Computed (rate)
N = 2 N = 4 N = 8 N = 16 N = 32

1 1.0163 1.0045 (1.9) 1.0011 (2.0) 1.0003 (2.0) 1.0001 (2.0)
1 1.0445 1.0113 (2.0) 1.0028 (2.0) 1.0007 (2.0) 1.0002 (2.0)
2 2.0830 2.0300 (1.5) 2.0079 (1.9) 2.0020 (2.0) 2.0005 (2.0)
4 4.2664 4.1212 (1.1) 4.0315 (1.9) 4.0079 (2.0) 4.0020 (2.0)
4 4.2752 4.1224 (1.2) 4.0316 (2.0) 4.0079 (2.0) 4.0020 (2.0)
5 5.2244 5.1094 (1.0) 5.0326 (1.7) 5.0084 (2.0) 5.0021 (2.0)
5 5.5224 5.2373 (1.1) 5.0647 (1.9) 5.0164 (2.0) 5.0041 (2.0)
8 5.8945 8.3376 (2.6) 8.1198 (1.5) 8.0314 (1.9) 8.0079 (2.0)
9 6.3737 9.5272 (2.3) 9.1498 (1.8) 9.0382 (2.0) 9.0096 (2.0)
9 6.8812 9.5911 (1.8) 9.1654 (1.8) 9.0420 (2.0) 9.0105 (2.0)

zeros 7 39 175 735 3007

DOF 46 190 766 3070 12286

(in each component) on the criss-cross mesh sequence are listed in Table 5.3
(page 36). At first glance, the results of the computation might lead to
the conclusion that the eigenvalues have been well approximated: the zero
frequency is approximated by an increasing number of zero discrete eigen-
values (up to machine precision) and the remaining discrete values are well
separated from zero and quadratically converging towards integer numbers.
Unfortunately, some limit values do not correspond to exact solutions: spu-
rious eigenvalues are computed with this scheme and are indicated with an
exclamation mark in Table 5.3. Figure 5.6 shows the eigenfunctions corre-
sponding to the eigenvalues ranging from position 70 to 72 in the spectrum
computed with the mesh at level N = 8. The checkerboard pattern of the
eigenfunction corresponding to eigenvalue number 71, which is the value
converging to the spurious solution equal to 6, is evident.

Two more spurious solutions, corresponding to eigenvalues number 79
and 80 (which converge to 15), are displayed in Figure 5.7.

Remark 5.2. All examples presented so far for the approximation of the
eigenvalues of Maxwell’s equations correspond to standard schemes for the
discretization of problem (5.10): find λh ∈ R and ph ∈ rot(Σh) = Uh with
ph �≡ 0 such that, for some σh ∈ Σh,

(σh, τ ) + (ph, rot τ ) = 0 ∀τ ∈ Σh, (5.11a)
(rot σh, q) = −λh(ph, q) ∀q ∈ Uh. (5.11b)
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70 71 72

Figure 5.6. The first spurious eigenfunction (centre) on
the criss-cross mesh for N = 8.

78 79

80 81

Figure 5.7. The second and third spurious eigenfunctions
(numbers 80 and 81) on the criss-cross mesh for N = 8.
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Table 5.3. Eigenvalues computed with nodal elements on the criss-cross mesh
sequence of triangles of Figure 3.9.

Exact Computed (rate)
N = 2 N = 4 N = 8 N = 16 N = 32

1 1.0662 1.0170 (2.0) 1.0043 (2.0) 1.0011 (2.0) 1.0003 (2.0)
1 1.0662 1.0170 (2.0) 1.0043 (2.0) 1.0011 (2.0) 1.0003 (2.0)
2 2.2035 2.0678 (1.6) 2.0171 (2.0) 2.0043 (2.0) 2.0011 (2.0)
4 4.8634 4.2647 (1.7) 4.0680 (2.0) 4.0171 (2.0) 4.0043 (2.0)
4 4.8634 4.2647 (1.7) 4.0680 (2.0) 4.0171 (2.0) 4.0043 (2.0)
5 6.1338 5.3971 (1.5) 5.1063 (1.9) 5.0267 (2.0) 5.0067 (2.0)
5 6.4846 5.3971 (1.9) 5.1063 (1.9) 5.0267 (2.0) 5.0067 (2.0)

!→ 6 6.4846 5.6712 (0.6) 5.9229 (2.1) 5.9807 (2.0) 5.9952 (2.0)
8 11.0924 8.8141 (1.9) 8.2713 (1.6) 8.0685 (2.0) 8.0171 (2.0)
9 11.0924 10.2540 (0.7) 9.3408 (1.9) 9.0864 (2.0) 9.0217 (2.0)
9 11.1164 10.2540 (0.8) 9.3408 (1.9) 9.0864 (2.0) 9.0217 (2.0)

10 10.9539 10.4193 (1.2) 10.1067 (2.0) 10.0268 (2.0)
10 10.9539 10.4193 (1.2) 10.1067 (2.0) 10.0268 (2.0)
13 11.1347 13.7027 (1.4) 13.1804 (2.0) 13.0452 (2.0)
13 11.1347 13.7027 (1.4) 13.1804 (2.0) 13.0452 (2.0)

!→15 19.4537 13.9639 (2.1) 14.7166 (1.9) 14.9272 (2.0)
!→15 19.4537 13.9639 (2.1) 14.7166 (1.9) 14.9272 (2.0)

16 19.7860 17.0588 (1.8) 16.2722 (2.0) 16.0684 (2.0)
16 19.7860 17.0588 (1.8) 16.2722 (2.0) 16.0684 (2.0)
17 20.9907 18.1813 (1.8) 17.3073 (1.9) 17.0773 (2.0)

zeros 3 15 63 255 1023

DOF 14 62 254 1022 4094

In particular, when Σh consists of edge or nodal elements (of lowest or-
der), Uh is the space of piecewise constant functions with zero mean value.
All comments made so far then apply to the approximation of the Laplace
eigenproblem in mixed form, with the identification discussed above (ap-
proximations of the mixed Laplace eigenproblem do not present vanishing
discrete values and the eigenfunctions for the formulation in H0(div; Ω) can
be obtained from those presented here by rotation of the angle π/2).
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Table 5.4. Eigenvalues computed with edge elements on a sequence of uniform
meshes of squares.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

1 1.0524 1.0129 (2.0) 1.0032 (2.0) 1.0008 (2.0) 1.0002 (2.0)
1 1.0524 1.0129 (2.0) 1.0032 (2.0) 1.0008 (2.0) 1.0002 (2.0)
2 2.1048 2.0258 (2.0) 2.0064 (2.0) 2.0016 (2.0) 2.0004 (2.0)
4 4.8634 4.2095 (2.0) 4.0517 (2.0) 4.0129 (2.0) 4.0032 (2.0)
4 4.8634 4.2095 (2.0) 4.0517 (2.0) 4.0129 (2.0) 4.0032 (2.0)
5 5.9158 5.2225 (2.0) 5.0549 (2.0) 5.0137 (2.0) 5.0034 (2.0)
5 5.9158 5.2225 (2.0) 5.0549 (2.0) 5.0137 (2.0) 5.0034 (2.0)
8 9.7268 8.4191 (2.0) 8.1033 (2.0) 8.0257 (2.0) 8.0064 (2.0)
9 12.8431 10.0803 (1.8) 9.2631 (2.0) 9.0652 (2.0) 9.0163 (2.0)
9 12.8431 10.0803 (1.8) 9.2631 (2.0) 9.0652 (2.0) 9.0163 (2.0)

zeros 9 49 225 961 3969

DOF 24 112 480 1984 8064

5.2. Approximation of Maxwell’s eigenvalues on quadrilateral meshes

We conclude the discussion of the approximation of Maxwell’s eigenval-
ues with the result of some numerical computations involving quadrilateral
meshes.

The first computation, given in Table 5.4, involves edge elements and a
sequence of uniform meshes of squares. The discrete eigenvalues converge
towards the exact solutions quadratically, as expected, and from above.

In order to warn the reader about possible troubles arising from distorted
quadrilateral meshes (in the spirit of the results presented in Arnold, Boffi
and Falk (2002, 2005)), in Table 5.5 we present the results of a compu-
tation on the sequence of distorted meshes shown in Figure 5.8. In this
case the eigenvalues do not converge to the right solution. Indeed, it
can be shown that the discrete eigenvalues converge quadratically to in-
correct values, which depend on the distortion of the particular mesh used
(Gamallo 2002, Bermúdez, Gamallo, Nogueiras and Rodŕıguez 2006). When
using higher-order edge elements, the eigenmodes converge, but with sub-
optimal rate. Some results on second-order edge elements are reported in
Boffi, Kikuchi and Schöberl (2006c).

There are several possible cures for this bad behaviour. The first, intro-
duced in Arnold, Boffi and Falk (2005), consists in adding internal degrees
of freedom in each element so that the optimal approximation properties
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Figure 5.8. Sequence of distorted quadrilateral meshes (N = 4, 8, 16).

Table 5.5. Eigenvalues computed with edge elements on the sequence of
distorted quadrilaterals of Figure 5.8.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

1 1.0750 1.0484 (0.6) 1.0418 (0.2) 1.0402 (0.1) 1.0398 (0.0)
1 1.0941 1.0531 (0.8) 1.0430 (0.3) 1.0405 (0.1) 1.0399 (0.0)
2 2.1629 2.1010 (0.7) 2.0847 (0.3) 2.0807 (0.1) 2.0797 (0.0)
4 4.6564 4.3013 (1.1) 4.1936 (0.6) 4.1674 (0.2) 4.1609 (0.1)
4 5.0564 4.3766 (1.5) 4.2124 (0.8) 4.1721 (0.3) 4.1621 (0.1)
5 5.8585 5.3515 (1.3) 5.2362 (0.6) 5.2078 (0.2) 5.2007 (0.0)
5 5.9664 5.4232 (1.2) 5.2539 (0.7) 5.2122 (0.3) 5.2019 (0.1)
8 9.5155 8.6688 (1.2) 8.4046 (0.7) 8.3390 (0.3) 8.3228 (0.1)
9 11.5509 10.0919 (1.2) 9.5358 (1.0) 9.4011 (0.4) 9.3681 (0.1)
9 12.9986 10.4803 (1.4) 9.6307 (1.2) 9.4250 (0.6) 9.3741 (0.2)

zeros 9 49 225 961 3969

DOF 24 112 480 1984 8064

are restored. The convergence analysis for the eigenvalues computed with
this new element (sometimes referred to as the ABF element) can be found
in Gardini (2005).

Another, cheaper, cure consists in using a projection technique, which can
also be interpreted as a reduced integration strategy (Boffi et al. 2006c). In
the lowest-order case it reduces to projecting rotuh onto piecewise constants
in formulation (5.9), or, equivalently, to using the midpoint rule in order to
evaluate the integral (rotuh, rotv).
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Figure 5.9. First 50 discrete eigenvalues computed with piecewise
bilinear elements on the uniform mesh of squares (N = 4, 8, 16).

Remark 5.3. On distorted quadrilateral meshes, the equivalence between
our original formulation and the mixed formulation (5.11) is no longer true.
More precisely, the equivalence is true by choosing Uh = rot(Σh), and Uh

in this case is not a standard finite element space. For instance, in the case
of lowest-order edge elements, Uh in each element K is made of functions
C/|J |, where |J | is the determinant of the Jacobian of the mapping from
the reference cube K̂ to K, and C is a generic constant. The projection
procedure just described has the effect of changing the discrete formulation,
so that in the lowest-order case it turns out to be equivalent to the mixed
problem (5.11), with Uh equal to the space of piecewise constant functions.
A similar procedure also holds for higher-order edge elements; we refer the
interested reader to Boffi et al. (2006c) for more details.

We conclude this section with some comments on nodal element approx-
imation of Maxwell’s eigenvalues on rectangular meshes (Boffi, Durán and
Gastaldi 1999a). The presented results, in particular, will give some expla-
nations for the spurious eigenvalues shown in Table 5.3.

We start by using classical bilinear elements Q1 in each component, on a
sequence of meshes obtained by dividing the square Ω = ]0, π[ into N2 sub-
squares. The results, which are similar to those obtained by linear elements
on unstructured triangular meshes, are given in Figure 5.9. It is clear that
these results cannot provide any reasonable approximation to the problem
we are interested in.

Another possible scheme consists in projecting rotuh onto piecewise con-
stants in formulation (5.9). From the comments made in Remark 5.3, it
turns out that this is indeed analogous to considering the Q1 − P0 scheme
for mixed Laplacian. The eigenvalues computed with this scheme are given
in Table 5.6 and we would like to point out the analogies with the criss-cross
computation shown in Table 5.3. It is clear that there is a spurious discrete
eigenvalue which converges to 18 (here the term ‘spurious’ is meant with
respect to the multiplicity, since there is in fact an exact solution with value
18 and multiplicity 1). As in the criss-cross example of Table 5.3, there are
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Table 5.6. Eigenvalues computed with the projected Q1 scheme (Q1 − P0) on the
sequence of uniform meshes of squares.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

1 1.0524 1.0129 (2.0) 1.0032 (2.0) 1.0008 (2.0) 1.0002 (2.0)
1 1.0524 1.0129 (2.0) 1.0032 (2.0) 1.0008 (2.0) 1.0002 (2.0)
2 1.9909 1.9995 (4.1) 2.0000 (4.0) 2.0000 (4.0) 2.0000 (4.0)
4 4.8634 4.2095 (2.0) 4.0517 (2.0) 4.0129 (2.0) 4.0032 (2.0)
4 4.8634 4.2095 (2.0) 4.0517 (2.0) 4.0129 (2.0) 4.0032 (2.0)
5 5.3896 5.1129 (1.8) 5.0288 (2.0) 5.0072 (2.0) 5.0018 (2.0)
5 5.3896 5.1129 (1.8) 5.0288 (2.0) 5.0072 (2.0) 5.0018 (2.0)
8 7.2951 7.9636 (4.3) 7.9978 (4.1) 7.9999 (4.0) 8.0000 (4.0)
9 8.7285 10.0803 ( 2.0) 9.2631 (2.0) 9.0652 (2.0) 9.0163 (2.0)
9 11.2850 10.0803 (1.1) 9.2631 (2.0) 9.0652 (2.0) 9.0163 (2.0)

10 11.2850 10.8308 (0.6) 10.2066 (2.0) 10.0515 (2.0) 10.0129 (2.0)
10 12.5059 10.8308 (1.6) 10.2066 (2.0) 10.0515 (2.0) 10.0129 (2.0)
13 12.5059 13.1992 (1.3) 13.0736 (1.4) 13.0197 (1.9) 13.0050 (2.0)
13 12.8431 13.1992 ( 0.3) 13.0736 (1.4) 13.0197 (1.9) 13.0050 (2.0)
16 12.8431 14.7608 (1.3) 16.8382 (0.6) 16.2067 (2.0) 16.0515 (2.0)
16 17.5489 16.8382 (0.9) 16.2067 (2.0) 16.0515 (2.0)
17 19.4537 17.1062 (4.5) 17.1814 ( 0.8) 17.0452 (2.0)
17 19.4537 17.7329 (1.7) 17.1814 (2.0) 17.0452 (2.0)

!→ 18 19.9601 17.7329 (2.9) 17.7707 (0.2) 17.9423 (2.0)
18 19.9601 17.9749 (6.3) 17.9985 (4.0) 17.9999 (4.0)
20 21.5584 20.4515 (1.8) 20.1151 (2.0) 20.0289 (2.0)
20 21.5584 20.4515 (1.8) 20.1151 (2.0) 20.0289 (2.0)

zeros 15 63 255 1023 4095

DOF 30 126 510 2046 8190
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other spurious solutions with higher frequencies. In this particular case, the
closed form of the computed solutions was computed in Boffi et al. (1999a).
It has been shown that the 2(N2 − 1) degrees of freedom are split into two
equal parts: N2 − 1 of them correspond to the zero frequency, while the
remaining N2 − 1 can be ordered in the following way, by means of two
indices m,n ranging from 0 to N − 1 with m+ n �= 0:

λ
(m,n)
h = (4/h2)

sin2(mh
2 ) + sin2(nh

2 ) − 2 sin2(mh
2 ) sin2(nh

2 )

1 − (2/3)(sin2(mh
2 ) + sin2(nh

2 )) + (4/9) sin2(mh
2 ) sin2(nh

2 )
.

The corresponding eigenfunctions u(m,n)
h = (u(m,n), v(m,n)) are given by

u(m,n)(xi, yj) = −2
h

sin
(
mh

2

)
cos

(
nh

2

)
sin(mxi) cos(nyj), (5.12a)

v(m,n)(xi, yj) = −2
h

cos
(
mh

2

)
sin

(
nh

2

)
cos(mxi) sin(nyj). (5.12b)

Looking at the formulae (5.12), it seems at first glance that the eigen-
modes converge to the exact solution with the correct multiplicity and that
there are no spurious solutions. Indeed, given a fixed pair (m,n), it is easy
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Figure 5.10. Discrete eigenvalues of the
Q1 − P0 scheme as a function of (m,n).
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Figure 5.11. Discrete eigenvalues of the Q1 − P0 scheme for m = n.

to see that λ(m,n)
h tends to m2 + n2 and u(m.n)

h to grad(cos(mx) cos(nx)) =
−(m sin(mx) cos(nx), n cos(mx) sin(nx)). On the other hand, it can also be
easily observed that

lim
N→∞

λ
(N−1,N−1)
h = 18,

where N = π/h. A clear picture of this phenomenon can be seen in Fig-
ure 5.10, where the surface defined by λ

(m,n)
h is plotted as a function of

(m,n). The surface is not convex; in particular, it is not monotone in m
and n and, moreover, the value at the corner opposite to the origin tends to
18 as h goes to zero. In Figure 5.11 we also show the section of the surface
along the diagonal m = n.

With the help of these analytical results, it is possible to sort the eigen-
values of Table 5.6 in a different way, so that the rate of convergence of the
spurious eigenvalue can be better evaluated (see Table 5.7).

The behaviour of the presented Q1 − P0 scheme is very similar to that
already seen in Table 5.3 for the triangular criss-cross mesh. In that case a
closed form of the discrete solution is not available, but can be found for a
slight modification of the method (Boffi and Gastaldi 2004).

Remark 5.4. A possible cure for the pathology of the Q1 − P0 scheme
was proposed in Chen and Taylor (1990) and analysed for a square domain
in Boffi et al. (1999a). Unfortunately, this method does not seem to provide
good results in the case of singular solutions (such as those obtained in an
L-shaped domain).
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Table 5.7. Eigenvalues computed with the projected Q1 scheme (Q1 − P0) on the
sequence of uniform meshes of squares with the spurious eigenvalue sorted in a
different way.

Exact Computed (rate)
N = 4 N = 8 N = 16 N = 32 N = 64

1 1.0524 1.0129 (2.0) 1.0032 (2.0) 1.0008 (2.0) 1.0002 (2.0)
1 1.0524 1.0129 (2.0) 1.0032 (2.0) 1.0008 (2.0) 1.0002 (2.0)
2 1.9909 1.9995 (4.1) 2.0000 (4.0) 2.0000 (4.0) 2.0000 (4.0)
4 4.8634 4.2095 (2.0) 4.0517 (2.0) 4.0129 (2.0) 4.0032 (2.0)
4 4.8634 4.2095 (2.0) 4.0517 (2.0) 4.0129 (2.0) 4.0032 (2.0)
5 5.3896 5.1129 (1.8) 5.0288 (2.0) 5.0072 (2.0) 5.0018 (2.0)
5 5.3896 5.1129 (1.8) 5.0288 (2.0) 5.0072 (2.0) 5.0018 (2.0)
8 7.2951 7.9636 (4.3) 7.9978 (4.1) 7.9999 (4.0) 8.0000 (4.0)
9 11.2850 10.0803 (1.1) 9.2631 (2.0) 9.0652 (2.0) 9.0163 (2.0)
9 11.2850 10.0803 (1.1) 9.2631 (2.0) 9.0652 (2.0) 9.0163 (2.0)

10 12.5059 10.8308 (1.6) 10.2066 (2.0) 10.0515 (2.0) 10.0129 (2.0)
10 12.5059 10.8308 (1.6) 10.2066 (2.0) 10.0515 (2.0) 10.0129 (2.0)
13 12.8431 13.1992 ( 0.3) 13.0736 (1.4) 13.0197 (1.9) 13.0050 (2.0)
13 12.8431 13.1992 ( 0.3) 13.0736 (1.4) 13.0197 (1.9) 13.0050 (2.0)
16 17.5489 16.8382 (0.9) 16.2067 (2.0) 16.0515 (2.0)
16 19.4537 16.8382 (2.0) 16.2067 (2.0) 16.0515 (2.0)
17 19.4537 17.7329 (1.7) 17.1814 (2.0) 17.0452 (2.0)
17 19.9601 17.7329 (2.0) 17.1814 (2.0) 17.0452 (2.0)

!→ 18 8.7285 14.7608 (1.5) 17.1062 (1.9) 17.7707 (2.0) 17.9423 (2.0)
18 19.9601 17.9749 (6.3) 17.9985 (4.0) 17.9999 (4.0)
20 21.5584 20.4515 (1.8) 20.1151 (2.0) 20.0289 (2.0)
20 21.5584 20.4515 (1.8) 20.1151 (2.0) 20.0289 (2.0)

zeros 15 63 255 1023 4095

DOF 30 126 510 2046 8190
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PART TWO
Galerkin approximation of compact eigenvalue problems

This part of our survey contains the classical spectral approximation theory
for compact operators. It is the core of our work, since all eigenvalue prob-
lems we are going to consider are related to compact operators, and we will
constantly rely on the fundamental tools described in Section 9. The ap-
proximation theory for compact eigenvalue problems has been the object of
a wide investigation. A necessarily incomplete list of the most relevant ref-
erences is Văınikko (1964, 1966), Kato (1966), Anselone and Palmer (1968),
Stummel (1970, 1971, 1972), Anselone (1971), Bramble and Osborn (1973),
Chatelin (1973), Osborn (1975), Grigorieff (1975a, 1975b, 1975c), Chatelin
and Lemordant (1975), Chatelin (1983), Babuška and Osborn (1989, 1991),
Kato (1995) and Knyazev and Osborn (2006).

The Galerkin approximation of the Laplace eigenvalue problem, for which
we present in Section 8 a rigorous analysis that makes use of standard tools,
fits within the framework of the numerical approximation of variationally
posed eigenvalue problems, discussed in Sections 7 and 9.

An example of the non-conforming approximation of eigenvalue problems
is analysed in Section 11, where a new convergence analysis for Crouzeix–
Raviart approximation of the Laplace eigenvalue problem is provided.

6. Spectral theory for compact operators

In this section we present the main definitions we shall need.
Let X be a complex Hilbert space and let T : X → X be a compact

linear operator. The resolvent set ρ(T ) is given by the complex numbers
z ∈ C such that (zI − T ) is bijective. We shall use the standard notation
z − T = zI − T and the resolvent operator is given by (z − T )−1. The
spectrum of T is σ(T ) = C \ ρ(T ), which is well known to be a countable
set with no limit points different from zero. All non-zero values in σ(T )
are eigenvalues (that is, z − T is one-to-one); zero may or may not be an
eigenvalue.

If λ is a non-vanishing eigenvalue of T , then the ascent multiplicity α of
λ − T is the smallest integer such that ker(λ − T )α = ker(λ − T )α+1. The
terminology comes from the fact that there also exists a similar definition
for the descent multiplicity, which makes use of the range instead of the
kernel; for compact operators ascent and descent multiplicities coincide.
The dimension of ker(λ − T )α is called the algebraic multiplicity of λ, and
the elements of ker(λ−T )α are the generalized eigenvectors of T associated
with λ. A generalized eigenvector is of order k if it is in ker(λ − T )k, but
not in ker(λ − T )k−1. The generalized eigenvectors of order 1 are called
eigenvectors of T associated with λ, and are the elements of ker(λ − T ).
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The dimension of ker(λ−T ) is called the geometric multiplicity of λ, which
is always less than or equal to the algebraic multiplicity. If T is self-adjoint,
which will be the case for all examples discussed in this work, then the
ascent multiplicity of each eigenvalue is equal to one. This implies that all
generalized eigenvectors are eigenvectors, and that the geometric and the
algebraic multiplicities coincide.

Given a closed smooth curve Γ ⊂ ρ(T ) which encloses λ ∈ σ(T ), and no
other elements of σ(T ), the Riesz spectral projection associated with λ is
defined by

E(λ) =
1

2π i

∫
Γ
(z − T )−1 dz. (6.1)

The definition clearly does not depend on the chosen curve, and it can be
checked that E(λ) : X → X, that E(λ) ◦ E(λ) = E(λ) (which means it
is actually a projection), that E(λ) ◦ E(µ) = 0 if λ �= µ, that T ◦ E(λ) =
E(λ) ◦ T , and that the range of E(λ) is equal to ker(λ − T )α, the space of
generalized eigenvectors (which is an invariant subspace for T ). This last
property will be of fundamental importance for the study of eigenvector
approximation, and we emphasize it in the following formula:

E(λ)X = ker(λ− T )α.

In general, if Γ ⊂ ρ(T ) encloses more eigenvalues λ1, λ2, . . . , λn, then we
have that

E(λ1, λ2, . . . , λn)X =
n
⊕
i=1

ker(λi − T )αi ,

where αi denotes the ascent multiplicity of λi −T , so that the dimension of
the range of the spectral projection is in general the sum of the algebraic
multiplicities of the eigenvalues that lie inside Γ.

Let T ∗ : X → X denote the adjoint of T . Then λ ∈ σ(T ∗) if and only if
λ ∈ σ(T ), where λ denotes the conjugate of λ. In particular, the eigenvalues
of self-adjoint operators are real. The algebraic multiplicity of λ ∈ σ(T ∗) is
equal to the algebraic multiplicity of λ ∈ σ(T ) and the ascent multiplicity
of λ− T ∗ is equal to that of λ− T .

7. Variationally posed eigenvalue problems

In this section we introduce some preliminary results on variationally posed
eigenvalue problems. The main theoretical results are presented in Section 9.

The main focus of this survey is on symmetric eigenvalue problems, and
for this reason we start with symmetric variationally posed eigenvalue prob-
lems. Hence, we are dealing with real Hilbert spaces and real-valued bilinear
forms. Some discussion of the non-symmetric case can be found in Section 9.

Let V and H be real Hilbert spaces. We suppose that V ⊂ H with dense
and continuous embedding. Let a : V × V → R and b : H × H → R
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be symmetric and continuous bilinear forms, and consider the following
problem: find λ ∈ R and u ∈ V , with u �= 0, such that

a(u, v) = λb(u, v) ∀v ∈ V. (7.1)

We suppose that a is V -elliptic, that is, there exists α > 0 such that

a(v, v) ≥ α‖v‖2
V ∀v ∈ V.

The ellipticity condition could be weakened by assuming a G̊arding-like
inequality, that is, a(·, ·) + µb(·, ·) is elliptic for a suitable positive µ. We
will not detail this situation, which can be reduced to the elliptic case by a
standard shift procedure.

For the sake of simplicity we assume that b defines a scalar product in H.
In several applications, H will be L2(Ω) and b its standard inner product.

An important tool for the analysis of (7.1) is the solution operator T :
H → H: given f ∈ H, our hypotheses guarantee the existence of a unique
Tf ∈ V such that

a(Tf, v) = b(f, v) ∀v ∈ V.

Since we are interested in compact eigenvalue problems, we make the as-
sumption that

T : H → H is a compact operator,

which is often a consequence of a compact embedding of V into H. We have
already observed that we consider T to be self-adjoint.

We assume that the reader is familiar with the spectral theory of compact
operators; we recall in particular that the spectrum σ(T ) of T is a countable
or finite set of real numbers with a cluster point possible only at zero. All
positive elements of σ(T ) are eigenvalues with finite multiplicity, and their
reciprocals are exactly the eigenvalues of (7.1); moreover, the eigensolutions
of (7.1) have the same eigenspaces as those of T .

We let λ(k), k ∈ N, denote the eigenvalues of (7.1) with the natural
numbering

λ(1) ≤ λ(2) ≤ · · · ≤ λ(k) ≤ · · · ,
where the same eigenvalue can be repeated several times according to its
multiplicity. We let u(k) denote the corresponding eigenfunctions, with the
standard normalization b(u(k), u(k)) = 1, and let E(k) = span{u(k)} denote
the associated eigenspaces (see below for multiple eigenvalues). We explic-
itly observe that even for simple eigenvalues the normalization procedure
does not identify u(k) uniquely, but only up to its sign.

It is well known that the eigenfunctions enjoy the orthogonalities

a(u(m), u(n)) = b(u(m), u(n)) = 0 if m �= n, (7.2)

which can be deduced easily from (7.1) if λ(m) �= λ(n); otherwise, for multiple
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eigenvalues, when λ(m) = λ(n), the eigenfunctions u(m) and u(n) can be
chosen such that the orthogonalities (7.2) hold.

The Rayleigh quotient is an important tool for the study of eigenvalues:
it turns out that

λ(1) = min
v∈V

a(v, v)
b(v, v)

, u(1) = arg min
v∈V

a(v, v)
b(v, v)

,

λ(k) = min
v∈

(
k−1
⊕

i=1
E(i)

)⊥

a(v, v)
b(v, v)

, u(k) = arg min

v∈
(

k−1
⊕

i=1
E(i)

)⊥

a(v, v)
b(v, v)

,
(7.3)

where it has been implicitly understood (here and in the rest of the paper)
that the minima are taken for v �= 0, so that quantities in the denominators
do not vanish. The symbol ‘⊥’ denotes the orthogonal complement in V
with respect to the scalar product induced by the bilinear form b. Due to
the orthogonalities (7.2), it turns out that the orthogonal complement could
also be taken with respect to the scalar product induced by a.

The Galerkin discretization of problem (7.1) is based on a finite-dimen-
sional space Vh ⊂ V and reads as follows: find λh and uh ∈ Vh, with uh �= 0,
such that

a(uh, v) = λhb(uh, v) ∀v ∈ Vh. (7.4)

Remark 7.1. For historical reasons, we adopt the notation of the h-
version of finite elements, and we understand that h is a parameter which
tends to zero. Nevertheless, if not explicitly stated, the theory we describe
applies to a general Galerkin approximation.

Since Vh is a Hilbert subspace of V , we can repeat the same comments we
made for problem (7.1), starting from the definition of the discrete solution
operator Th : H → H: given f ∈ H, Thf ∈ Vh is uniquely defined by

a(Thf, v) = b(f, v) ∀v ∈ Vh.

Since Vh is finite-dimensional, Th is compact; the eigenmodes of Th are in
one-to-one correspondence with those of (7.4) (the equivalence being that
the eigenvalues are inverse to each other and the eigenspaces are the same),
and we can order the discrete eigenvalues of (7.4) as follows:

λ
(1)
h ≤ λ

(2)
h ≤ · · · ≤ λ

(k)
h ≤ · · · ,

where eigenvalues can be repeated according to their multiplicity. We use
u

(k)
h , with the normalization b(u(k)

h , u
(k)
h ) = 1, to denote the discrete eigen-

functions, and E
(k)
h = span{u(k)

h } for the associated eigenspaces. Discrete
eigenfunctions satisfy the same orthogonalities as the continuous ones,

a(u(m)
h , u

(n)
h ) = b(u(m)

h , u
(n)
h ) = 0 if m �= n,
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where again this property is a theorem when λ
(m)
h �= λ

(n)
h or a definition

when λ(m)
h = λ

(n)
h .

Moreover, the properties of the Rayleigh quotient can be applied to dis-
crete eigenmodes as follows:

λ
(1)
h = min

v∈Vh

a(v, v)
b(v, v)

, u
(1)
h = arg min

v∈Vh

a(v, v)
b(v, v)

,

λ
(k)
h = min

v∈
(

k−1
⊕

i=1
E

(i)
h

)⊥

a(v, v)
b(v, v)

, u
(k)
h = arg min

v∈
(

k−1
⊕

i=1
E

(i)
h

)⊥

a(v, v)
b(v, v)

,
(7.5)

where the symbol ‘⊥’ now denotes the orthogonal complement in Vh. An
easy consequence of the inclusion Vh ⊂ V and of the Rayleigh quotient
properties is

λ(1) ≤ λ
(1)
h ,

that is, the first discrete eigenvalue is always an upper bound of the first
continuous eigenvalue. Unfortunately, equations (7.3) and (7.5) do not allow
us to infer any bound between the other eigenvalues, since it is not true in
general that

(
⊕k−1

i=1 E
(i)
h

)⊥ is a subset of
(
⊕k−1

i=1 E
(i)

)⊥. For this reason, we
recall the important min-max characterization of the eigenvalues.

Proposition 7.2. The kth eigenvalue λ(k) of problem (7.1) satisfies

λ(k) = min
E∈V (k)

max
v∈E

a(v, v)
b(v, v)

,

where V (k) denotes the set of all subspaces of V with dimension equal to k.

Proof. In order to show that λ(k) is greater than or equal to the min-max,
take E = ⊕k

i=1E
(i), so that v =

∑k
i=1 αiu

(i). From the orthogonalities and
the normalization of the eigenfunctions, it is easy to obtain the inequality
a(v, v)/b(v, v) ≤ λ(k).

The proof of the opposite inequality also gives the additional information
that the minimum is attained for E = ⊕k

i=1E
(i) and the choice v = u(k).

It is clear that if E = ⊕k
i=1E

(i) then the optimal choice for v is u(k). On
the other hand, if E �= ⊕k

i=1E
(i) then there exists v ∈ E with v orthogonal

to u(i) for all i ≤ k, and hence a(v, v)/b(v, v) ≥ λ(k), which shows that
E = ⊕k

i=1E
(i) is the optimal choice for E.

The analogous min-max condition for the discrete problem (7.4) states

λ
(k)
h = min

Eh∈V
(k)
h

max
v∈Eh

a(v, v)
b(v, v)

, (7.6)

where V (k)
h denotes the set of all subspaces of Vh with dimension equal to k.
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It is then an easy consequence that a conforming approximation Vh ⊂ V
implies that all eigenvalues are approximated from above,

λ(k) ≤ λ
(k)
h ∀k,

since all sets Eh ∈ V
(k)
h in the discrete min-max property are also in V (k),

and hence the discrete minimum is evaluated over a smaller set than the
continuous one.

Monotonicity is an interesting property (and this behaviour was observed
in the numerical examples of Part 1), but it is not enough to show the con-
vergence. The definition of convergence for eigenvalues/eigenfunctions is an
intuitive concept, which requires a careful formalism. First of all, we would
like the kth discrete eigenvalue to converge towards the kth continuous one.
This implies two important facts: all solutions are well approximated and no
spurious eigenvalues pollute the spectrum. The numbering we have chosen
for the eigenvalues, moreover, implies that the eigenvalues are approximated
correctly with their multiplicity. The convergence of eigenfunctions is a little
more involved, since we cannot simply require u(k)

h to converge to u(k) in a
suitable norm. This type of convergence cannot be expected for at least two
good reasons. First of all, the eigenspace associated with multiple eigenval-
ues can be approximated by the eigenspaces of distinct discrete eigenvalues
(see, for example, (3.2)). Then, even in the case of simple eigenvalues, the
normalization of the eigenfunctions is not enough to ensure convergence,
since they might have the wrong sign. The natural definition of conver-
gence makes use of the notion of the gap between Hilbert spaces, defined by

δ(E,F ) = sup
u∈E

‖u‖H=1

inf
v∈F

‖u− v‖H ,

δ̂(E,F ) = max(δ(E,F ), δ(F,E)).

A possible definition of the convergence of eigensolutions was introduced
in Boffi, Brezzi and Gastaldi (2000a). For every positive integer k, let m(k)
denote the dimension of the space spanned by the first distinct k eigenspaces.
Then we say that the discrete eigenvalue problem (7.4) converges to the
continuous one (7.1) if, for any ε > 0 and k > 0, there exists h0 > 0 such
that, for all h < h0, we have

max
1≤i≤m(k)

|λ(i) − λ
(i)
h | ≤ ε,

δ̂

(
m(k)
⊕
i=1

E(i),
m(k)
⊕
i=1

E
(i)
h

)
≤ ε.

(7.7)

It is remarkable that this definition includes all properties that we need:
convergence of eigenvalues and eigenfunctions with correct multiplicity, and
absence of spurious solutions.
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Remark 7.3. The definition of convergence (7.7) does not give any indi-
cation of the approximation rate. It is indeed quite common to separate
the convergence analysis for eigenvalue problems into two steps: firstly, the
convergence and the absence of spurious modes is investigated in the spirit
of (7.7), then suitable approximation rates are proved.

Proposition 7.4. Problem (7.4) converges to (7.1) in the spirit of (7.7)
if and only if the following norm convergence holds true:

‖T − Th‖L(H) → 0 when h→ 0. (7.8)

Proof. The sufficient part of the proposition is a well-known result in the
spectral approximation theory of linear operators (Kato 1995, Chapter IV).
The necessity of norm convergence for good spectral approximation of sym-
metric compact operators was shown in Boffi et al. (2000a, Theorem 5.1).

Remark 7.5. Our compactness assumption can be modified by assuming
that T : V → V is compact. In this case norm convergence similar to (7.8)
in L(V ) would ensure an analogous eigenmodes convergence of (7.7) with
the natural modifications.

In order to show the convergence in norm (7.8), it is useful to recall that
the discrete operator Th can be seen as Th = PhT , where Ph : V → Vh

is the elliptic projection associated to the bilinear form a. This fact is a
standard consequence of Galerkin orthogonality and implies that T − Th

can be written as (I − Ph)T , where I denotes the identity operator.
The next proposition can be used to prove convergence in norm.

Proposition 7.6. If T is compact from H to V and Ph converges strongly
to the identity operator from V to H, then the norm convergence (7.8) from
H to H holds true.

Proof. First we show that the sequence {‖I − Ph‖L(V,H)} is bounded. De-
fine c(h, u) by ‖(I−Ph)u‖H = c(h, u)‖u‖V . Strong (pointwise) convergence
means that for each u we have c(h, u) → 0. Thus M(u) = maxh c(h, u) is
finite. By the uniform boundedness principle (or Banach–Steinhaus theo-
rem), there exists C such that, for all h, ‖I − Ph‖L(V,H) ≤ C.

Consider a sequence {fh} such that, for each h, ‖fh‖H = 1 and ‖T −
Th‖L(H) = ‖(T − Th)fh‖H . Since {fh} is bounded in H and T is com-
pact from H to V , there exists a subsequence, which we again denote by
{fh}, such that Tfh → w in V . We claim that ‖(I − Ph)Tfh‖H → 0 for
the subsequence, and hence for the sequence itself. T is a closed operator:
there exists v ∈ H such that Tv = w. By hypothesis Thv → w; further-
more, Thv = PhTv = Phw. The strong convergence of Tfh → w in V and
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Phw → w in H, the triangle inequality and the boundedness of {‖I −
Ph‖L(V,H)} imply that, for any ε > 0, there exists h small enough such that

‖(I − Ph)Tfh‖H ≤ ‖(I − Ph)(Tfh − w)‖H + ‖(I − Ph)w‖H

≤ C‖Tfh − w‖V + ‖(I − Ph)w‖H ≤ ε.

Remark 7.7. Results such as that presented in Proposition 7.6 have been
used very often in the literature dealing with the approximation theory
for linear operators. There are many variants of this, and it is often said
that compact operators transform strong (pointwise) into norm (uniform)
convergence. It is worth noticing that this result is only true when the
compact operator is applied to the right of the converging sequence. For
abstract results in this context, we refer, for instance, to Anselone (1971);
the same statement as in Proposition 7.6 in the framework of variationally
posed eigenvalue problems can be found in Kolata (1978).

Remark 7.8. The same proof as in Proposition 7.6 can be used to show
that, if T is compact from V into V , then a stronger pointwise conver-
gence of Ph to the identity, from V into V , is sufficient to ensure the norm
convergence

‖T − Th‖L(V ) → 0 when h→ 0.

Such convergence is equivalent to a type of convergence of eigenvalues and
eigenfunctions analogous to (7.7).

8. A direct proof of convergence for Laplace eigenvalues

A fundamental example of elliptic partial differential equation is given by
the Laplace operator. Although the convergence theory of the finite element
approximation of Laplace eigenmodes is a particular case of the analysis pre-
sented in Sections 7 and 9, we now study this basic example. The analysis
will be performed with standard tools in the case of Dirichlet boundary con-
ditions and piecewise linear finite elements, but can be applied with minor
modifications to Neumann or mixed boundary conditions and to higher-
order finite elements. The same technique extends to more general linear
eigenvalue problems associated with elliptic operators. Similar arguments
can be found in Strang and Fix (1973) and are based on the pioneering
work of Birkhoff, de Boor, Swartz and Wendroff (1966) (see also Raviart
and Thomas (1983) or Larsson and Thomée (2003)).

Given a polyhedral domain in R
3 (respectively, a polygonal domain in R

2),
we are interested in the solution of the following problem: find eigenvalues
λ and eigenfunctions u with u �= 0 such that

−∆u = λu in Ω,

u = 0 on ∂Ω.
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A variational formulation of our problem can be obtained by introducing
the space V = H1

0 (Ω) and in looking for λ ∈ R and u ∈ V , with u �= 0, such
that

(gradu,grad v) = λ(u, v) ∀v ∈ V. (8.1)

Let Vh ⊂ V be the space of piecewise linear finite elements with van-
ishing boundary conditions. Then we consider the following approximating
problem: find λh ∈ R and uh ∈ Vh, with uh �= 0, such that

(graduh,grad v) = λh(uh, v) ∀v ∈ Vh. (8.2)

We use the notation of the previous section for the eigensolutions of our
continuous and discrete problems. In particular, we adopt the enumeration
convention that eigenvalues are repeated according to their multiplicity. We
already know from the min-max principle stated in Proposition 7.2 that all
eigenvalues are approximated from above, that is,

λ(k) ≤ λ
(k)
h ∀k,

so that, in order to show the convergence of the eigenvalues, we need the
upper bound

λ
(k)
h ≤ λ(k) + ε(h)

with ε(h) tending to zero as h tends to zero.
We shall use

Eh = ΠhV
(k)

in the min-max characterization of the discrete eigenvalues (7.6), where

V (k) =
k
⊕
i=1

E(i)

and Πh : V → Vh denotes the elliptic projection

(grad(u− Πhu),grad vh) = 0 ∀vh ∈ Vh.

In order to do so, we need to check whether the dimension of Eh is equal
to k. This can be false in general (for instance, the entire dimension of Vh

could be smaller than k), but it is true if h is small enough, as a consequence
of the bound

‖Πhv‖L2(Ω) ≥ ‖v‖L2(Ω) − ‖v − Πhv‖L2(Ω) ∀v ∈ V. (8.3)

Indeed, if we take h such that

‖v − Πhv‖L2(Ω) ≤
1
2
‖v‖L2(Ω) ∀v ∈ V (k), (8.4)

then (8.3) implies that Πh is injective from V (k) to Eh. It is clear that (8.4)
is satisfied for sufficiently small h (how small depending on k).
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Taking Eh in the discrete min-max equation (7.6) gives

λ
(k)
h ≤ max

w∈Eh

‖gradw‖2
L2(Ω)

‖w‖2
L2(Ω)

= max
v∈V (k)

‖grad(Πhv)‖2
L2(Ω)

‖Πhv‖2
L2(Ω)

≤ max
v∈V (k)

‖grad v‖2
L2(Ω)

‖Πhv‖2
L2(Ω)

= max
v∈V (k)

‖grad v‖2
L2(Ω)

‖v‖2
L2(Ω)

‖v‖2
L2(Ω)

‖Πhv‖2
L2(Ω)

≤ λ(k) max
v∈V (k)

‖v‖2
L2(Ω)

‖Πhv‖2
L2(Ω)

.

In order to estimate the last term, let us suppose that Ω is convex. Then,
it is well known that V (k) is contained in H2(Ω) and that

‖v − Πhv‖L2(Ω) ≤ Ch2‖∆v‖L2(Ω) ≤ Cλ(k)h2‖v‖L2(Ω) = C(k)h2‖v‖L2(Ω).

Hence, from (8.3), we obtain

‖Πhv‖L2(Ω) ≥ ‖v‖L2(Ω)(1 − C(k)h2),

which gives the final estimate,

λ
(k)
h ≤ λ(k)

(
1

1 − C(k)h2

)2

 λ(k)
(
1 + C(k)h2

)2  λ(k)(1 + 2C(k)h2).

In the case of a general domain Ω, it is possible to obtain the following
more general result (Raviart and Thomas 1983):

λ
(k)
h ≤ λ(k)

(
1 + C(k) sup

v∈V (k)

‖v‖=1

‖v − Πhv‖2
H1(Ω)

)
. (8.5)

We conclude this section with an estimate for the eigenfunctions. It
should be clear from the discussion related to estimate (3.2) that the study
of the case of multiple eigenvalues is not so simple. For this reason, we start
with the situation when λ(i) �= λ(k) for all i �= k (that is, λ(k) is a simple
eigenvalue).

We introduce the following quantity (Raviart and Thomas 1983):

ρ
(k)
h = max

i
=k

λ(k)

|λ(k) − λ
(i)
h |
,

which makes sense for sufficiently small h since λ(k) is a simple eigenvalue
and we already know that λ(i)

h tends to λ(i) �= λ(k).
We also consider the L2(Ω)-projection of Πhu

(k) onto the space spanned
by u(k)

h ,

w
(k)
h = (Πhu

(k), u
(k)
h )u(k)

h ,
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in order to estimate the difference (u(k) − u
(k)
h ) as follows:

‖u(k)−u(k)
h ‖L2(Ω) ≤ ‖u(k)−Πhu

(k)‖+‖Πhu
(k)−w(k)

h ‖+‖w(k)
h −u(k)

h ‖. (8.6)

The first term in (8.6) can be easily estimated in terms of powers of h
using the properties of Πh; let us start with the analysis of the second term.
From the definition of w(k)

h , we have

Πhu
(k) − w

(k)
h =

∑
i
=k

(Πhu
(k), u

(i)
h )u(i)

h ,

which gives
‖Πhu

(k) − w
(k)
h ‖2 =

∑
i
=k

(Πhu
(k), u

(i)
h )2. (8.7)

We have

(Πhu
(k), u

(i)
h ) =

1

λ
(i)
h

(grad(Πhu
(k)),gradu(i)

h )

=
1

λ
(i)
h

(gradu(k),gradu(i)
h ) =

λ(k)

λ
(i)
h

(u(k), u
(i)
h ),

that is,
λ

(i)
h (Πhu

(k), u
(i)
h ) = λ(k)(u(k), u

(i)
h ).

Subtracting λ(k)(Πhu
(k), u

(i)
h ) from both sides of the equality, we obtain

(λ(i)
h − λ(k))(Πhu

(k), u
(i)
h ) = λ(k)(u(k) − Πhu

(k), u
(i)
h ),

which gives
|(Πhu

(k), u
(i)
h )| ≤ ρ

(k)
h |(u(k) − Πhu

(k), u
(i)
h )|.

From (8.7) we finally get

‖Πhu
(k) − w

(k)
h ‖2 ≤

(
ρ
(k)
h

)2
∑
i
=k

(u(k) − Πhu
(k)), u(i)

h )2

≤
(
ρ
(k)
h

)2‖u(k) − Πhu
(k)‖2.

(8.8)

In order to bound the final term in (8.6), we observe that if we show that

‖u(k)
h − w

(k)
h ‖ ≤ ‖u(k) − w

(k)
h ‖, (8.9)

then we can conclude that

‖u(k)
h − w

(k)
h ‖ ≤ ‖u(k) − Πhu

(k)‖ + ‖Πhu
(k) − w

(k)
h ‖, (8.10)

and we have already estimated the last two terms. From the definition of
w

(k)
h , we have

u
(k)
h − w

(k)
h = u

(k)
h (1 − ((Πhu

(k), u
(k)
h )).
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Moreover,

‖u(k)‖ − ‖u(k) − w
(k)
h ‖ ≤ ‖w(k)

h ‖ ≤ ‖u(k)‖ + ‖u(k) − w
(k)
h ‖,

and the normalization of u(k) and u(k)
h gives

1 − ‖u(k) − w
(k)
h ‖ ≤ |(Πhu

(k), u
(k)
h )| ≤ 1 + ‖u(k) − w

(k)
h ‖,

that is, ∣∣|(Πhu
(k), u

(k)
h )| − 1

∣∣ ≤ ‖u(k) − w
(k)
h ‖. (8.11)

Now comes a crucial point concerning the uniqueness of the normalized
eigenfunctions. We have already observed that the normalization of the
eigenfunctions does not identify them in a unique way (even in the case of
simple eigenvalues), but only up to their sign. Here we have to choose the
appropriate sign of u(k)

h in order to have a good approximation of u(k). The
correct choice in this case is the one that provides

(Πhu
(k), u

(k)
h ) ≥ 0,

so that we can conclude that the left-hand side of (8.11) is equal to ‖w(k)
h −

u
(k)
h ‖ and (8.9) is satisfied.
Putting together all the previous considerations, that is, (8.6), (8.8) and

(8.10), we can conclude that, in the case of a simple eigenfunction u(k), there
exists an appropriate choice of the sign of u(k)

h such that

‖u(k) − u
(k)
h ‖L2(Ω) ≤ 2(1 + ρ

(k)
h )‖u(k) − Πhu

(k)‖L2(Ω).

In particular, in the case of a convex domain this gives the optimal bound

‖u(k) − u
(k)
h ‖L2(Ω) ≤ Ch2.

The error in the energy norm can be estimated in a standard way as
follows:

C‖u(k)− u
(k)
h ‖2

H1(Ω) ≤ ‖grad(u(k) − u
(k)
h )‖2

L2(Ω)

= ‖gradu(k)‖2− 2(gradu(k),gradu(k)
h ) + ‖gradu(k)

h ‖2

= λ(k) − 2λ(k)(u(k), u
(k)
h ) + λ

(k)
h

= λ(k) − 2λ(k)(u(k), u
(k)
h ) + λ(k) − (λ(k) − λ

(k)
h )

= λ(k)‖u(k) − u
(k)
h ‖2

L2(Ω) − (λ(k) − λ
(k)
h ).

The leading term in the last estimate is the second one, which gives the
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following optimal bound (see (8.5)):

‖u(k) − u
(k)
h ‖H1(Ω) ≤ C(k) sup

v∈V (k)

‖v‖=1

‖v − Πhv‖H1(Ω).

In order to conclude the convergence analysis of problem (8.2), it re-
mains to discuss the convergence of eigenfunctions in the case of multiple
eigensolutions. As we have already remarked several times, one of the most
important issues consists in the appropriate definition of convergence. For
the sake of simplicity, we shall discuss the case of a double eigenvalue, but
our analysis generalizes easily to any multiplicity. Some of the technical
details are identical to the arguments used in the case of an eigenfunction
of multiplicity 1, but we repeat them here for the sake of completeness.

Let λ(k) be an eigenvalue of multiplicity 2, that is, λ(k) = λ(k+1) and λ(i) �=
λ(k) for i �= k, k + 1. We would like to find a good approximation for u(k)

trying to mimic what has been done in the case of multiplicity 1. Analogous
considerations hold for the approximation of u(k+1). It is clear that we
cannot expect u(k)

h to converge to u(k), as was observed in the discussion
related to (3.2); hence we look for an appropriate linear combination of two
discrete eigenfunctions:

w
(k)
h = αhu

(k)
h + βhu

(k+1)
h .

From the above study, it seems reasonable to make the following choice:

αh = (Πhu
(k), u

(k)
h ), βh = (Πhu

(k), u
(k+1)
h ),

so that w(k)
h will be the L2(Ω)-projection of Πhu

(k) onto the space spanned
by u(k)

h and u(k+1)
h . The analogue of (8.6) then contains two terms,

‖u(k) − w
(k)
h ‖L2(Ω) ≤ ‖u(k) − Πhu

(k)‖ + ‖Πhu
(k) − w

(k)
h ‖,

and only the last one needs to be estimated. We have

Πhu
(k) − w

(k)
h =

∑
i
=k,k+1

(Πhu
(k), u

(i)
h )u(i)

h ,

which gives

‖Πhu
(k) − w

(k)
h ‖2 =

∑
i
=k,k+1

(Πhu
(k), u

(i)
h )2. (8.12)

It follows that

(Πhu
(k), u

(i)
h ) =

1

λ
(i)
h

(grad(Πhu
(k)),gradu(i)

h )

=
1

λ
(i)
h

(gradu(k),gradu(i)
h ) =

λ(k)

λ
(i)
h

(u(k), u
(i)
h ),
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that is,

λ
(i)
h (Πhu

(k), u
(i)
h ) = λ(k)(u(k), u

(i)
h ).

Subtracting λ(k)(Πhu
(k), u

(i)
h ) from both sides of the equality, we obtain

(λ(i)
h − λ(k))(Πhu

(k), u
(i)
h ) = λ(k)(u(k) − Πhu

(k), u
(i)
h ),

which gives

|(Πhu
(k), u

(i)
h )| ≤ ρ

(k)
h |(u(k) − Πhu

(k), u
(i)
h )|

with the appropriate definition of ρ(k)
h ,

ρ
(k)
h = max

i
=k,k+1

λ(k)

|λ(k) − λ
(i)
h |
,

which makes sense for sufficiently small h, since we know that λ(i)
h tends to

λ(i) �= λ(k) for i �= k, k + 1. From (8.12) we finally get

‖Πhu
(k) − w

(k)
h ‖2 ≤

(
ρ
(k)
h

)2
∑

i
=k,k+1

(u(k) − Πhu
(k)), u(i)

h )2

≤
(
ρ
(k)
h

)2‖u(k) − Πhu
(k)‖2,

which gives the optimal bound

‖u(k) − w
(k)
h ‖L2(Ω) ≤ (1 + ρ

(k)
h )‖u(k) − Πhu

(k)‖L2(Ω).

The derivation of convergence estimates in the energy norm is less im-
mediate, since we cannot repeat the argument used for the case of eigen-
solutions of multiplicity 1. The main difference is that the approximating
eigenfunction w

(k)
h is not normalized. However, the proof can be modified

as follows:

C‖u(k)−w(k)
h ‖2

H1(Ω) ≤ ‖grad(u(k) − w
(k)
h )‖2

L2(Ω)

= ‖gradu(k)‖2 − 2(gradu(k),gradw(k)
h ) + ‖gradw(k)

h ‖2

= λ(k) − 2λ(k)(u(k), w
(k)
h ) + α2

hλ
(k)
h + β2

hλ
(k+1)
h

= λ(k) − 2λ(k)(u(k), w
(k)
h ) + (α2

h + β2
h)λ(k)

− ((α2
h + β2

h)λ(k) − α2
hλ

(k)
h − β2

hλ
(k+1)
h )

= λ(k)‖u(k) − w
(k)
h ‖2

L2(Ω) − α2
h(λ(k) − λ

(k)
h ) − β2

h(λ(k) − λ
(k+1)
h )

and we get the optimal estimate

‖u(k) − w
(k)
h ‖H1(Ω) ≤ C(k) sup

v∈V (k+1)

‖v‖=1

‖v − Πhv‖H1(Ω).
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The following theorem summarizes the results obtained so far.

Theorem 8.1. Let (λ(i), u(i)) be the solutions of problem (8.1) with the
notation of Section 7, and let (λ(i)

h , u
(i)
h ) be the corresponding discrete so-

lutions of problem (8.2). Let Πh : V → Vh denote the elliptic projection.
Then, for any k not larger than the dimension of Vh, for sufficiently small
h, we have

λ(k) ≤ λ
(k)
h ≤ λ(k) + C(k) sup

v∈V (k)

‖v‖=1

‖v − Πhv‖2
H1(Ω),

with V (k) = ⊕i≤k E
(k).

Moreover, let λ(k) be an eigenvalue of multiplicity m ≥ 1, so that

λ(k) = · · · = λ(k+m−1) and λ(i) �= λ(k)

for i �= k, . . . , k +m− 1. Then there exists

{w(k)
h } ⊂ E

(k)
h ⊕ · · · ⊕E

(k+m−1)
h

such that

‖u(k) − w
(k)
h ‖H1(Ω) ≤ C(k) sup

v∈V (k+m−1)

‖v‖=1

‖v − Πhv‖H1(Ω)

and
‖u(k) − w

(k)
h ‖L2(Ω) ≤ C(k)‖u(k) − Πhu

(k)‖L2(Ω).

The results presented so far are optimal when all the eigenfunctions
are smooth. For instance, if the domain is convex, it is well known that
‖v − Πhv‖H1(Ω) = O(h) for all eigenfunctions v, so that Theorem 8.1 gives
the optimal second order of convergence for the eigenvalues, first order in
H1(Ω) for the eigenfunctions, and second order in L2(Ω) for the eigenfunc-
tions. On the other hand, if the domain is not regular (see, for instance,
the computations presented in Section 3.2) it usually turns out that some
eigenspaces contain smooth eigenfunctions, while others may contain singu-
lar eigenfunctions. In such cases, we obtain from Theorem 8.1 a sub-optimal
estimate, since some bounds are given in terms of the approximability of
V (k). Hence, if we are interested in the kth eigenvalue, we have to consider
the regularity properties of all the eigenspaces up to the kth one. This sub-
optimal behaviour is not observed in practice (see, for instance, Table 3.4);
the theoretical investigations presented in the subsequent sections will con-
firm that the rate of convergence of the kth eigenvalue/eigenfunction is
indeed related to the approximability of the eigenfunctions associated with
the kth eigenvalue, alone. For sharper results concerning multiple eigenval-
ues, the reader is referred to Knyazev and Osborn (2006).
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9. The Babuška–Osborn theory

It is generally understood that the basic reference for the finite element
approximation of compact eigenvalue problems is the so-called Babuška–
Osborn theory (Babuška and Osborn 1991). In this section, we recall the
main results of the theory, and refer the reader to the original reference for
more details.

While the main focus of this survey is on symmetric eigenvalue problems,
it is more convenient to embed the discussion of the present section in the
complex field C and to study a generic non-symmetric problem. Those in-
terested in wider generality may observe that the original theory can be
developed in Banach spaces; we shall, however, limit ourselves to the inter-
esting case of Hilbert spaces.

We follow the notation introduced in Section 6.
LetX be a Hilbert space and let T : X → X be a compact linear operator.

We consider a family of compact operators Th : X → X such that

‖T − Th‖L(X) → 0 as h→ 0. (9.1)

In our applications, Th will be a finite rank operator. We have already seen
examples of this situation in Section 7.

As a consequence of (9.1), if λ ∈ σ(T ) is a non-zero eigenvalue with
algebraic multiplicity m, then exactly m discrete eigenvalues of Th (counted
with their algebraic multiplicities), converge to λ as h tends to zero. This
follows from the well-known fact that, given an arbitrary closed curve Γ ⊂
ρ(T ) as in the definition (6.1) of the projection E(λ), for sufficiently small
h we have Γ ⊂ ρ(Th), and Γ encloses exactly m eigenvalues of Th, counted
with their algebraic multiplicities. More precisely, for sufficiently small h it
makes sense to consider the discrete spectral projection

Eh(λ) =
1

2π i

∫
Γ
(z − Th)−1 dz,

and it turns out that the dimension of Eh(λ)X is equal to m. Moreover,

‖E(λ) − Eh(λ)‖L(X) → 0 as h→ 0,

which implies the convergence of the generalized eigenvectors.
It is common practice, when studying the approximation of eigenmodes,

to split the convergence analysis into two parts: the first step consists in
showing that the eigenmodes converge and that there are no spurious solu-
tions, the second one deals with the order of convergence.

The above considerations give an answer to the first question and we
summarize these results in the following statement.

Theorem 9.1. Let us assume that the convergence in norm (9.1) is sat-
isfied. For any compact set K ⊂ ρ(T ), there exists h0 > 0 such that, for
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all h < h0, we have K ⊂ ρ(Th) (absence of spurious modes). If λ is a non-
zero eigenvalue of T with algebraic multiplicity equal to m, then there are m
eigenvalues λ1,h, λ2,h, . . . , λm,h of Th, repeated according to their algebraic
multiplicities, such that each λi,h converges to λ as h tends to 0.

Moreover, the gap between the direct sum of the generalized eigenspaces
associated with λ1,h, λ2,h, . . . , λm,h and the generalized eigenspace associ-
ated to λ tends to zero as h tends to 0.

We now report the main results of the Babuška–Osborn theory (Babuška
and Osborn 1991, Theorems 7.1–7.4) which deal with the convergence order
of eigenvalues and eigenvectors. One of the main applications of the the-
ory consists in the convergence analysis for variationally posed eigenvalue
problems (Babuška and Osborn 1991, Theorems 8.1–8.4); this is the cor-
rect setting for the general analysis of the problems discussed in Sections 7
and 8. We start with the generalization of the framework of Section 7 to
non-symmetric variationally posed eigenvalue problems.

Let V1 and V2 be complex Hilbert spaces. We are interested in the fol-
lowing eigenvalue problem: find λ ∈ C and u ∈ V1, with u �= 0, such that

a(u, v) = λb(u, v) ∀v ∈ V2, (9.2)

where a : V1 × V2 → C and b : V1 × V2 → C are sesquilinear forms. The
form a is assumed to be continuous,

|a(v1, v2)| ≤ C‖v1‖V1‖v2‖V2 ∀v1 ∈ V1 ∀v2 ∈ V2,

and the form b is continuous with respect to a compact norm: there exists
a norm ‖ · ‖H1 in V1 such that any bounded sequence in V1 has a Cauchy
subsequence with respect to ‖ · ‖H1 and

|b(v1, v2)| ≤ C‖v1‖H1‖v2‖V2 ∀v1 ∈ V1 ∀v2 ∈ V2.

The Laplace eigenvalue problem considered in Sections 8 and 10 fits within
this setting with the choices V1 = V2 = H1

0 (Ω) and H1 = L2(Ω).
In order to define the solution operators, we assume the inf-sup condition

inf
v1∈V1

sup
v2∈V2

|a(v1, v2)|
‖v1‖V1‖v2‖V2

≥ γ > 0,

sup
v1∈V1

|a(v1, v2)| > 0 ∀v2 ∈ V2 \ {0},

so that we can introduce T : V1 → V1 and T∗ : V2 → V2 by

a(Tf, v) = b(f, v) ∀f ∈ V1 ∀v ∈ V2,

a(v, T∗g) = b(v, g) ∀g ∈ V2 ∀v ∈ V1.

From our assumptions it follows that T and T∗ are compact operators
(Babuška and Osborn 1991); moreover, the adjoint of T on V1 is given
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by T ∗ = A∗ ◦ T∗ ◦ A∗−1, where A : V1 → V2 is the standard linear operator
associated to the bilinear form a.

Remark 9.2. In some applications (for instance those involving spaces
like H0(div; Ω) or H0(curl; Ω)) it might be difficult to satisfy the compact-
ness assumption on the bilinear form b. The theory can, however, be applied
without modifications, by directly assuming the compactness of T and T∗.

A pair (λ, u) is an eigenmode of problem (9.2) if and only if it satisfies
λTu = u, that is, (µ, u) is an eigenpair of the operator T with µ = λ−1.
The concepts of ascent multiplicity, algebraic multiplicity and generalized
eigenfunctions of problem (9.2) are then defined in terms of the analogous
properties for the operator T .

We shall also make use of the following adjoint eigenvalue problem: find
λ ∈ C and u ∈ V2, with u �= 0, such that

a(v, u) = λb(v, u) ∀v ∈ V1. (9.3)

The discretization of problem (9.2) consists in selecting finite-dimensional
subspaces V1,h and V2,h, and in considering the following problem: find
λh ∈ C and v1,h ∈ V1,h with v1,h �= 0 such that

a(v1,h, v2) = λhb(v1,h, v2) ∀v2 ∈ V2,h. (9.4)

We suppose that
dim(V1,h) = dim(V2,h),

so that (9.4) is actually a generalized (square) eigenvalue problem.
We assume that the discrete uniform inf-sup conditions are satisfied,

inf
v1∈V1,h

sup
v2∈V2,h

|a(v1, v2)|
‖v1‖V1‖v2‖V2

≥ γ > 0,

sup
v1∈V1,h

|a(v1, v2)| > 0 ∀v2 ∈ V2,h \ {0},

so that the discrete solution operators Th and T∗,h can be defined in analogy
to T and T∗. It is clear that the convergence of the eigensolutions of (9.4)
towards those of (9.2) can be analysed by means of the convergence of Th

and T∗,h to T and T∗.
We are now ready to report the four main results of the theory. For each

result, we state a theorem concerning the approximation of the eigenpairs of
T followed by a corollary containing the consequences for the approximation
of the eigensolutions to (9.2).

We consider an eigenvalue λ of (9.2) (µ = λ−1 in the case of the operator
T ) of algebraic multiplicity m and with ascent of µ− T equal to α. For the
sake of generality, we let X denote the domain V1 of the operator T , so we
shall revert to the notation of Section 6.
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The first theorem concerns the approximation of eigenvectors.

Theorem 9.3. Let µ be a non-zero eigenvalue of T , let E = E(µ)X be
its generalized eigenspace, and let Eh = Eh(µ)X. Then

δ̂(E,Eh) ≤ C‖(T − Th)|E‖L(X).

Corollary 9.4. Let λ be an eigenvalue of (9.2), let E = E(λ−1)V1 be its
generalized eigenspace and let Eh = Eh(λ−1)V1. Then

δ̂(E,Eh) ≤ C sup
u∈E
‖u‖=1

inf
v∈V1,h

‖u− v‖V1 .

In the case of multiple eigenvalues it has been observed that it is conve-
nient to introduce the arithmetic mean of the approximating eigenvalues.

Theorem 9.5. Let µ be a non-zero eigenvalue of T with algebraic multi-
plicity equal to m and let µ̂h denote the arithmetic mean of the m discrete
eigenvalues of Th converging towards µ. Let φ1, . . . , φm be a basis of gen-
eralized eigenvectors in E = E(µ)X and let φ∗1, . . . , φ

∗
m be a dual basis of

generalized eigenvectors in E∗ = E∗(µ)X. Then

|µ− µ̂h| ≤
1
m

m∑
i=1

|((T −Th)φi, φ
∗
i )|+C‖(T −Th)|E‖L(X)‖(T ∗−T ∗

h )|E∗‖L(X).

Corollary 9.6. Let λ be an eigenvalue of (9.2) and let λ̂h denote the
arithmetic mean of the m discrete eigenvalues of (9.4) converging towards
λ. Then

|λ− λ̂h| ≤ C sup
u∈E
‖u‖=1

inf
v∈V1,h

‖u− v‖V1 sup
u∈E∗
‖u‖=1

inf
v∈V2,h

‖u− v‖V2 ,

where E is the space of generalized eigenfunctions associated with λ and
E∗ is the space of generalized adjoint eigenfunctions associated with λ (see
the adjoint problem (9.3)).

The estimate of the error in the eigenvalues involves the ascent multi-
plicity α.

Theorem 9.7. Let φ1, . . . , φm be a basis of the generalized eigenspace
E = E(µ)X of T and let φ∗1, . . . , φ

∗
m be a dual basis. Then, for i = 1, . . .m,

|µ− µi,h|α ≤

C

{
m∑

j,k=1

|((T − Th)φj , φ
∗
k)| + ‖(T − Th)|E‖L(X)‖(T ∗ − T ∗

h )|E∗‖L(X)

}
,

where µ1,h, . . . , µm,h are the m discrete eigenvalues (repeated according to
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their algebraic multiplicity) converging to µ, and E∗ is the space of gener-
alized eigenvectors of T ∗ associated with µ.

Corollary 9.8. With notation analogous to that of the previous theorem,
for i = 1, . . . ,m we have

|λ− λi,h|α ≤ C sup
u∈E
‖u‖=1

inf
v∈V1,h

‖u− v‖V1 sup
u∈E∗
‖u‖=1

inf
v∈V2,h

‖u− v‖V2 , (9.5)

where E is the space of generalized eigenfunctions associated with λ and
E∗ is the space of generalized adjoint eigenfunctions associated with λ (see
the adjoint problem (9.3)).

Remark 9.9. Apparently, the estimates of Corollaries 9.6 and 9.8 are not
immediate consequences of Theorems 9.5 and 9.7. In Section 10 we give
a proof of these results in the particular case of the Laplace eigenvalue
problem. The interested reader is referred to Babuška and Osborn (1991)
for the general case.

The last result is more technical than the previous ones and complements
Theorem 9.3 on the description of the approximation of the generalized
eigenvectors. In particular, for k = � = 1, the theorem applies to the
eigenvectors.

Theorem 9.10. Let {µh} be a sequence of discrete eigenvalues of Th con-
verging to a non-zero eigenvalue µ of T . Consider a sequence {uh} of unit
vectors in ker(µh−Th)k for some k ≤ α (discrete generalized eigenvectors of
order k). Then, for any integer � with k ≤ � ≤ α, there exists a generalized
eigenvector u(h) of T of order � such that

‖u(h) − uh‖α/(�−k+1)
X ≤ C‖(T − Th)|E‖L(X).

Corollary 9.11. Let {λh} be a sequence of discrete eigenvalues of (9.4)
converging to an eigenvalue λ of (9.2). Consider a sequence {uh} of unit
eigenfunctions in ker(λ−1

h −Th)k for some k ≤ α (discrete generalized eigen-
functions of order k). Then, for any integer � with k ≤ � ≤ α, there exists
a generalized eigenvector u(h) of (9.2) of order � such that

‖u(h) − uh‖α/(�−k+1)
V1

≤ C sup
u∈E
‖u‖=1

inf
v∈V1,h

‖u− v‖V1 .

We conclude this section with the application of the present theory to the
case of symmetric variationally posed eigenvalue problems. In particular,
the presented results will give a more comprehensive and precise treatment
of the problems discussed in Sections 7 and 8.
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We suppose that V1 = V2 are identical real Hilbert spaces, denoted by V ,
and that a and b are real and symmetric. We assume that a is V -elliptic,

a(v, v) ≥ γ > 0 ∀v ∈ V,

and that b can be extended to a continuous bilinear form on H × H with
a Hilbert space H such that V ⊂ H is a compact inclusion. We assume,
moreover, that b is positive on V × V :

b(v, v) > 0 ∀v ∈ V \ {0}.
In this case, as has already been observed in Section 7, the eigenvalues

of (9.2) are positive and can be ordered in a sequence tending to infinity,

0 < λ(1) ≤ λ(2) ≤ · · · ≤ λ(k) ≤ · · · ,
where we repeat the eigenvalues according to their multiplicities (we recall
that geometric and algebraic multiplicities are now the same and that the
ascent multiplicity of 1/λ(k) − T is 1 for all k).

Let Vh ⊂ V be the finite-dimensional space used for the eigenmodes ap-
proximation and denote by λ(k)

h (k = 1, . . . ,dim(Vh)) the discrete eigenval-
ues. The min-max principle (see Section 7, in particular Proposition 7.2
and the discussion thereafter) and Corollary 9.8 give the following result.

Theorem 9.12. For each k, we have

λ(k) ≤ λ
(k)
h ≤ λ(k) + C sup

u∈E
‖u‖=1

inf
v∈Vh

‖u− v‖2
V ,

where E denotes the eigenspace associated with λ(k).

Corollary 9.4 reads as follows in the symmetric case.

Theorem 9.13. Let u(k) be a unit eigenfunction associated with an eigen-
value λ(k) of multiplicity m, such that λ(k) = · · · = λ(k+m−1), and denote by
u

(k)
h , . . . , u

(k+m−1)
h the eigenfunctions associated with the m discrete eigen-

values converging to λ(k). Then, there exists

w
(k)
h ∈ span{u(k)

h , . . . , u
(k+m−1)
h }

such that
‖u(k) − w

(k)
h ‖V ≤ C sup

u∈E
‖u‖=1

inf
v∈Vh

‖u− v‖V ,

where E denotes the eigenspace associated with λ(k).

The results of the present section contain the basic estimates for eigenval-
ues and eigenfunctions of compact variationally posed eigenvalue problems.
Several other refined results are available.
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For instance, it is possible to obtain sharper estimates in the case of multi-
ple eigenvalues (see Knyazev and Osborn (2006) and the references therein):
in particular, these can be useful when a multiple eigenvalue is associated
with eigenfunctions with different regularities. Estimate (9.5) would predict
that in such a case the eigenvalue is approximated with the order of conver-
gence dictated by the lowest regularity of the eigenfunctions; on the other
hand it is possible that the approximating eigenvalues have different speeds
according to the different regularities of the associated eigenfunctions.

10. The Laplace eigenvalue problem

In this section we apply the Babuška–Osborn theory to the convergence
analysis of conforming finite element approximation to Laplace eigenvalue
problem.

The Laplace eigenvalue problem has already been analysed in several
parts of this paper, but we recall here the related variational formulations
for completeness. Given Ω ⊂ R

n and the real Sobolev space H1
0 (Ω), we look

for eigenvalues λ ∈ R and eigenfunctions u ∈ H1
0 (Ω), with u �= 0, such that

(gradu,grad v) = λ(u, v) ∀v ∈ H1
0 (Ω).

The Riesz–Galerkin discretization makes use of a finite-dimensional space
Vh ⊂ H1

0 (Ω), and consists in looking for eigenvalues λh ∈ R and eigenfunc-
tions uh ∈ Vh, with uh �= 0, such that

(graduh,grad v) = λh(uh, v) ∀v ∈ Vh.

We denote by a(·, ·) the bilinear form (grad ·,grad ·) and remark that the
considerations of this section can be easily generalized to any bilinear form
a which is equivalent to the scalar product of H1

0 (Ω). Moreover, other types
of homogeneous boundary conditions might be considered as well.

Using the notation of the previous section, the starting point for the
analysis consists in a suitable definition of the solution operator T : X → X
and, in particular, of the functional space X. Let V and H denote the
spaces H1

0 (Ω) and L2(Ω), respectively. The first, natural, definition consists
in taking X = V and in defining T : V → V by

a(Tf, v) = (f, v) ∀v ∈ V. (10.1)

Of course, the above definition can be easily extended to X = H, since it
makes perfect sense to consider the solution to the source Laplace problem
with f in L2(Ω). We then have at least two admissible definitions: TV :
V → V and TH : H → H. Clearly, TH can be defined analogously as for
TV by THf ∈ V ⊂ H and (10.1): the only difference between TV and TH is
the underlying spaces.

It is clear that TV and TH are self-adjoint. Since we are dealing with a
basic example, we stress the details of this result.
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Lemma 10.1. If V is endowed with the norm induced by the scalar prod-
uct given by the bilinear form a, then the operator TV is self-adjoint.

Proof. The result follows from the identities

a(TV x, y) = (x, y) = (y, x) = a(TV y, x) = a(x, TV y) ∀x, y ∈ V.

Lemma 10.2. The operator TH is self-adjoint.

Proof. The result follows from the identities

(THx, y) = (y, THx) = a(THy, THx) = a(THx, THy) = (x, THy) ∀x, y ∈ H.

Moreover, it is clear that the eigenvalues/eigenfunctions of the operators
TV and TH coincide, so that either operator can be used for the analysis.

The discussion of Section 9 shows that two main steps are involved. First
of all we have to define a suitable discrete solution operator Th satisfying a
convergence in norm results like (9.1). As a second step, only after we know
that the eigenvalues/eigenfunctions are well approximated can we estimate
the order of convergence.

For the convergence analysis performed in the next sections, we assume
that Vh is such that the following best approximation holds:

inf
v∈Vh

‖u− v‖L2(Ω) ≤ Chmin{k+1,r}‖u‖Hr(Ω),

inf
v∈Vh

‖u− v‖H1(Ω) ≤ Chmin{k,r−1}‖u‖Hr(Ω).

Such estimates are standard when Vh contains piecewise polynomials of
degree k.

10.1. Analysis for the choice T = TV

We now show how to use the results of Section 9 with the choice T = TV .
The discrete solution operator can be defined in a coherent way as Th : V →
V by Thf ∈ Vh ⊂ V , and

a(Thf, v) = (f, v) ∀v ∈ Vh.

The standard error estimate for the solution of the source Laplace equa-
tion implies that the norm convergence (9.1) is satisfied for all reasonable
domains. If Ω is Lipschitz-continuous, for instance, the following estimate
is well known: there exists ε > 0 such that

‖Tf − Thf‖H1
0 (Ω) ≤ Chε‖f‖H1

0 (Ω).

We can then conclude that the consequences of Theorem 9.1 are valid:
all continuous eigenvalues/eigenfunctions are correctly approximated and
all discrete eigenvalues/eigenfunctions approximate some continuous eigen-
values/eigenfunctions with the correct multiplicity.
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We now come to the task of estimating the rate of convergence. Let us
suppose that we are interested in the convergence rate for the approximation
of the eigenvalue λ, and that the regularity of the eigenspace E associated
with λ is r, that is, E ⊂ Hr(Ω), which implies

‖(T − Th)|E‖L(V ) = O(hmin{k,r−1}). (10.2)

Let us denote by τ the quantity min{k, r − 1}.
The estimate for the eigenfunctions is a more-or-less immediate conse-

quence of Corollary 9.4: we easily deduce the result of Theorem 9.13, which
can be summarized in this case by the next theorem.

Theorem 10.3. Let u be a unit eigenfunction associated with the eigen-
value λ of multiplicity m, and let w(1)

h , . . . , w
(m)
h denote eigenfunctions as-

sociated with the m discrete eigenvalues converging to λ. Then there exists

uh ∈ span{w(1)
h , . . . , w

(m)
h }

such that

‖u− uh‖V ≤ Chτ‖u‖H1+τ (Ω).

We now see how the result of Theorem 9.12 can be obtained from Theo-
rem 9.7. The proposed arguments will also provide a proof of Corollary 9.8
in this particular case.

Theorem 10.4. Let λh be an eigenvalue converging to λ. Then the fol-
lowing optimal double order of convergence holds:

λ ≤ λh ≤ λ+ Ch2τ .

Proof. From (10.2) and the conclusion of Theorem 9.7 it is clear that, since
T is self-adjoint, we only need to bound the term

m∑
j,k=1

|((T − Th)φj , φk)V |,

where {φ1, . . . , φm} is a basis for the eigenspace E.
We have

|((T − Th)u, v)V | ≤ C|a((T − Th)u, v)| = C inf
vh∈Vh

|a((T − Th)u, v − vh)|

≤ ‖(T − Th)u‖V inf
vh∈Vh

‖v − vh‖V

≤ Chτ‖u‖V h
τ‖v‖H1+τ (Ω) ≤ Ch2τ‖u‖V ‖v‖V ,

which is valid for any u, v ∈ E since v = λTv implies

‖v‖H1+τ (Ω) ≤ C‖v‖V .
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10.2. Analysis for the choice T = TH

If we choose to perform our analysis in the space H = L2(Ω), then we have
to define the discrete operator Th : H → H, which can be done by taking
Thf ∈ Vh ⊂ V ⊂ H as

a(Thf, v) = (f, v) ∀v ∈ Vh.

As in the previous case, it is immediate to obtain that the convergence in
norm (9.1) is satisfied for any reasonable domain. Namely, for Ω Lipschitz-
continuous, we have that there exists ε > 0 with

‖Tf − Thf‖L2(Ω) ≤ Ch1+ε‖f‖L2(Ω).

Using the same definition of τ as in the previous case, we can easily deduce
from Theorem 9.13 the optimal convergence estimate for the eigenfunctions.

Theorem 10.5. Let u be a unit eigenfunction associated with the eigen-
value λ of multiplicity m and let w(1)

h , . . . , w
(m)
h denote eigenfunctions asso-

ciated with the m discrete eigenvalues converging to λ. Then there exists
uh ∈ span{w(1)

h , . . . , w
(m)
h } such that

‖u− uh‖H ≤ Ch1+τ‖u‖H1+τ (Ω).

We conclude this section by showing that the estimates already proved for
the eigenvalues (optimal double order of convergence) and the eigenfunctions
(optimal order of convergence in H1(Ω)) can also be obtained in this setting.
In order to get a rate of convergence for the eigenvalues, we need, as in the
proof of Theorem 10.4, an estimate for the term

m∑
j,k=1

|((T − Th)φj , φk)H |,

where {φ1, . . . , φm} is a basis for the eigenspace E.
The conclusion is a consequence of the following estimate:

|((T − Th)u, v)| = |(v, (T − Th)u)| = |a(Tv, (T − Th)u)|
= |a((T − Th)u, Tv)| = |a((T − Th)u, Tv − Thv)|
≤ ‖(T − Th)u‖V ‖(T − Th)v‖V

≤ Ch2τ ,

which is valid for any u, v ∈ E with ‖u‖H = ‖v‖H = 1.
Finally, using the same notation as in Theorem 10.5, the estimate in V

for the eigenfunctions associated with simple eigenvalues follows from the
identity

a(u− uh, u− uh) = λ(u− uh, u− uh) − (λ− λh)(uh, uh),
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which can be obtained directly from the definitions of u, uh, λ, and λh. The
case of eigenfunctions with higher multiplicity is less immediate, but can be
handled with similar tools, using for λh a suitable linear combination of the
discrete eigenvalues converging to λ.

11. Non-conforming approximation of eigenvalue problems

The aim of this section is to see how the theory developed so far changes
when it is applied to non-conforming approximations, in particular when Vh

is not contained in V . Our interest in this topic lies in the fact that mixed
discretizations of partial differential equations can be seen as particular
situations of non-conforming approximations. We shall devote Part 3 of
this paper to the analysis of mixed finite elements for eigenvalue problems.

The question of the non-conforming approximation of compact eigenvalue
problems has been raised often in the literature, and several possible answers
are available. Without attempting to be complete, we refer the interested
reader to Rannacher (1979), Stummel (1980), Werner (1981), Armentano
and Durán (2004) and Alonso and Dello Russo (2009). Non-conforming ap-
proximations can also be analysed in the nice setting introduced in Descloux,
Nassif and Rappaz (1978a, 1978b) for the approximation of non-compact
operators.

We start with a basic example: triangular Crouzeix–Raviart elements
for the Laplace eigenvalue. This example has already been discussed from
the numerical point of view in Table 3.5. For this example, probably the
most complete reference can be found in Durán, Gastaldi and Padra (1999),
where this element is studied for the solution of an auxiliary problem. The
continuous problem is the same as in the previous section: find λ ∈ R and
u ∈ V with u �= 0 such that

a(u, v) = λ(u, v) ∀v ∈ V,

with V = H1
0 (Ω) and a(u, v) = (gradu,grad v). More general situations

might be considered with the same arguments; in particular, the analysis
is not greatly affected by the presence of a generic elliptic bilinear form
a or the case of a right-hand side of the equation where the the scalar
product in L2(Ω) is replaced by a bilinear form b which is equivalent to the
scalar product (this apparently small change may, however, introduce an
additional source of non-conformity). Other non-conforming finite elements
might be considered as well, as long as suitable estimates for the consistency
terms we are going to introduce are available.

Let Vh be the space of lowest-order Crouzeix–Raviart elements: given a
triangular mesh Th of the domain Ω with mesh size h, the space Vh consists
of piecewise linear elements which are continuous at the midpoint of the
inter-elements. The discrete problem is as follows: find λh ∈ R and uh ∈ Vh
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with uh �= 0 such that

ah(uh, v) = λh(uh, v) ∀v ∈ Vh,

where the discrete bilinear form ah is defined as

ah(u, v) =
∑

K∈Th

∫
K

gradu · grad v dx ∀u, v ∈ V + Vh.

It is clear that ah(u, v) = a(u, v) if u and v belong to V . It is natural to
introduce a discrete energy norm on the space V + Vh:

‖v‖2
h = ‖v‖2

L2(Ω) + ah(v, v) ∀v ∈ V + Vh.

In the previous section we saw that the Babuška–Osborn theory can be
applied to the analysis of the approximation of the Laplace eigenvalue prob-
lem with two different choices of the solution operator T . The first (and
more standard) approach consists in choosing T : V → V , while the second
one makes use of H = L2(Ω) and defines T : H → H. It is clear that for
the non-conforming approximation the first approach cannot produce any
useful result, since it is impossible to construct an operator valued in V
which represents the solution to our discrete problem which is defined in
Vh �⊂ V . We shall then use the latter approach and define T : H → H as
Tf ∈ V given by

a(Tf, v) = (f, v) ∀f ∈ H and ∀v ∈ V.

The corresponding choice for the discrete operator Th : H → H is Thf ∈
Vh ⊂ H given by

ah(Thf, v) = (f, v) ∀f ∈ H and ∀v ∈ Vh.

It is well known that Th is well-defined, and that the following optimal
estimate holds:

‖(T − Th)f‖h ≤ Ch‖f‖L2(Ω). (11.1)

The optimal estimate of (T − Th)f in L2(Ω) requires more regularity than
simply f ∈ L2(Ω) (Durán et al. 1999, Lemmas 1 and 2). In general we have

‖(T − Th)f‖L2(Ω) ≤ Ch2‖f‖H1(Ω),

which gives the optimal estimate if f is an eigenfunction, since in that case
‖f‖H1(Ω) can be bounded by ‖f‖L2(Ω):

‖(T − Th)f‖L2(Ω) ≤ Ch2‖f‖L2(Ω) ∀f eigenfunction of T. (11.2)

Remark 11.1. For the sake of simplicity, in the last estimates and in the
following analysis we are assuming that the domain is convex, so we do
not have to worry about the regularity of the solutions. Our arguments,
however, cover the general case of lower regularity as well.
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Estimate (11.1), in particular, shows that the convergence in norm (9.1)
is satisfied with X = H, so we can conclude that the discrete eigenmodes
converge to the continuous ones in the spirit of Theorem 9.1.

Let us now study the rate of convergence of the eigenvalues and eigen-
functions. Following what we have done in the previous section, we start
with the analysis involving the eigenfunctions.

Theorem 11.2. Let u be a unit eigenfunction associated with the eigen-
value λ of multiplicity m and let w(1)

h , . . . , w
(m)
h denote linearly independent

eigenfunctions associated with the m discrete eigenvalues converging to λ.
Then there exists uh ∈ span{w(1)

h , . . . , w
(m)
h } such that

‖u− uh‖L2(Ω) ≤ Ch2‖u‖L2(Ω).

Proof. The proof is an immediate consequence of Theorem 9.3 and esti-
mate (11.2).

Theorem 11.3. Let λh be an eigenvalue converging to λ. Then the fol-
lowing optimal double order of convergence holds:

|λ− λh| ≤ Ch2.

Proof. We are going to use Theorem 9.7 with X = H. It is clear that
in our case T and Th are self-adjoint, so we have T ∗ = T , T ∗

h = Th, and
α = 1. The second term in the estimate of Theorem 9.7 is of order h4 due
to (11.2), so we analyse in detail the term ((T − Th)φj , φk). Let u and v be
eigenfunctions associated with λ; we have to estimate ((T − Th)u, v). It is
clear that we can use the direct estimate

‖((T − Th)u, v)‖H ≤ ‖(T − Th)u‖H‖v‖H ,

and the result follows from (11.2).
We now present an alternative estimate of the term ((T − Th)u, v) which

emphasizes the role of the consistency error, and offers more flexibility for
generalization to other types of non-conforming approximations,

((T − Th)u, v) = ah((T − Th)u, Tv) + ah(Thu, (T − Th)v) (11.3)
= ah((T − Th)u, (T − Th)v)

+ ah((T − Th)u, Thv) + ah(Thu, (T − Th)v).

The first term on the right-hand side of (11.3) is of order h2 from (11.1),
so we need to bound the second term, which is analogous to the third one
from the symmetry of ah. We have

ah((T − Th)u, Thv) = ah(Tu, Thv) − (u, Thv)

=
∑

K∈Th

∫
∂K

(gradTu · n)Thv,
(11.4)
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which by standard arguments is equal to∑
e∈Eh

∫
e

(
(gradTu · ne) − Pe(gradTu · ne)

)
(Thv − PeThv)

=
∑
e∈Eh

∫
e

(
(gradTu · ne) − Pe(gradTu · ne)

)
×

(
(Thv − PeThv) − (Tv − PeTv)

)
,

where the set Eh contains all edges of the triangulation Th: the internal
edges are repeated twice with opposite orientation of the normal and with
appropriate definition of Thv|e (which jumps from one triangle to the other);
Pe denotes the L2(e)-projection onto constant functions on e. We deduce

|ah((T − Th)u, Thv)|
≤

∑
e∈Eh

‖(I − Pe)(gradTu · ne)‖L2(e)‖(I − Pe)(Tv − Thv)‖L2(e).

Putting all the pieces together gives the desired results from∑
e∈Eh

‖(I − Pe)(gradTu · ne)‖L2(e) ≤ Ch1/2
∑

K∈Th

‖Tu‖H2(K)

and ∑
e∈Eh

‖(I − Pe)(Tv − Thv)‖L2(e) ≤ Ch1/2‖(T − Th)v‖h

≤ Ch3/2‖v‖L2(Ω).

We now deduce an optimal error estimate for the eigenfunctions in the
discrete energy norm.

Theorem 11.4. With the same notation as in Theorem 11.2, we have

‖u− uh‖h ≤ Ch‖u‖L2(Ω).

Proof. We consider the case of a simple eigenvalue λ. The generalization
to multiple eigenvalues is technical and needs no significant new arguments.
We have the identity

u− uh = λTu− λhThuh

= (λ− λh)Tu+ λh(T − Th)u+ λhTh(u− uh),

and hence

‖u− uh‖h ≤ |λ− λh|‖Tu‖H1(Ω) + λh‖(T − Th)u‖h + λh‖Th(u− uh)‖h.

The first two terms are easily bounded by Theorem 11.3 and (11.1), respec-
tively. The last term can be estimated by observing that we have

C‖Th(u− uh)‖2
h ≤ ah(Th(u− uh), Th(u− uh)) = (u− uh, Th(u− uh))

and using the estimate for ‖u− uh‖L2(Ω) in Theorem 11.2.
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PART THREE

Approximation of eigenvalue problems in mixed form

In this part we study the approximation of eigenvalue problems which have a
particular structure, and which are often referred to as eigenvalue problems
in mixed form.

12. Preliminaries

Given two Hilbert spaces Φ and Ξ, and two bilinear forms a : Φ × Φ → R

and b : Φ × Ξ → R, the standard form of a source mixed problem is as
follows: given f ∈ Φ′ and g ∈ Ξ′, find ψ ∈ Φ and χ ∈ Ξ such that

a(ψ,ϕ) + b(ϕ, χ) = 〈f, ϕ〉 ∀ϕ ∈ Φ, (12.1a)
b(ψ, ξ) = 〈g, ξ〉 ∀ξ ∈ Ξ. (12.1b)

It is widely known that the natural conditions for the well-posedness of
problem (12.1) are suitable inf-sup conditions, and that the discrete versions
of the inf-sup conditions guarantee the stability of its approximation (Brezzi
1974, Babuška 1973, Brezzi and Fortin 1991).

If we suppose that there exist Hilbert spaces HΦ and HΞ such that the
following dense and continuous embeddings hold in a compatible way,

Φ ⊂ HΦ  H ′
Φ ⊂ Φ′,

Ξ ⊂ HΞ  H ′
Ξ ⊂ Ξ′

and we assume that the solution operator T ∈ L(HΦ ×HΞ) defined by

T (f, g) = (ψ, χ) (12.2)

(see (12.1)) is a compact operator, then a straightforward application of
the theory presented in Part 2 might provide a straightforward convergence
analysis for the approximation of the following eigenvalue problem: find
λ ∈ R and (φ, ξ) ∈ Φ × Ξ with (φ, ξ) �= (0, 0) such that

a(ψ,ϕ) + b(ϕ, χ) = λ(ψ,ϕ)HΦ
∀ϕ ∈ Φ,

b(ψ, ξ) = λ(χ, ξ)HΞ
∀ξ ∈ Ξ.

On the other hand, the most common eigenvalue problems in mixed form
correspond to a mixed formulation (12.1) where either f or g vanishes.
Moreover, it is not obvious (the Laplace eigenvalue problem being the most
famous counter-example) that the operator T defined on HΦ ×HΞ is com-
pact, so that, in general, eigenvalue problems in mixed form have to be
studied with particular care.

Following Boffi, Brezzi and Gastaldi (1997), we consider two types of
mixed eigenvalue problems. The first one (also known as the (f, 0)-type)
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consists of eigenvalue problems associated with the system (12.1) when
g = 0. A fundamental example for this class is the Stokes eigenvalue prob-
lem. The second family (also known as the (0, g)-type) corresponds to the
situation when in (12.1a) the right-hand side f vanishes. The Laplace eigen-
value problem in mixed form, for instance, belongs to this class.

The approximation of eigenvalue problems in mixed form has been the
object of several papers; among them we refer to Canuto (1978), to Mercier,
Osborn, Rappaz and Raviart (1981), which provides useful results for the
estimate of the order of convergence, and to Babuška and Osborn (1991).
The approach of this survey is taken from Boffi et al. (1997), where a com-
prehensive theory has been developed under the influence of the application
presented in Boffi et al. (1999b) and the counter-example of Boffi et al.
(2000a).

Since the notation used so far might appear cumbersome, in the next two
sections we use notation which should resemble the Stokes problem in the
case of problems of the first type and the mixed Laplace problem in the case
of problems of the second type.

13. Problems of the first type

Let V , Q, and H be Hilbert spaces, suppose that the standard inclusions

V ⊂ H  H ′ ⊂ V ′

hold with continuous and dense embeddings, and let us consider two bilinear
forms, a : V ×V → R and b : V ×Q→ R. We are interested in the following
symmetric eigenvalue problem: find λ ∈ R and u ∈ V with u �= 0 such that,
for some p ∈ Q,

a(u, v) + b(v, p) = λ(u, v) ∀v ∈ V, (13.1a)
b(u, q) = 0 ∀q ∈ Q, (13.1b)

where (·, ·) denotes the scalar product of H. We assume that a and b are
continuous and that a is symmetric and positive semidefinite.

Given finite-dimensional subspaces Vh ⊂ V and Qh ⊂ Q, the discretiza-
tion of (13.1) reads as follows: find λh ∈ R and uh ∈ Vh such that, for some
ph ∈ Q,

a(uh, v) + b(v, ph) = λh(uh, v) ∀v ∈ Vh, (13.2a)
b(uh, q) = 0 ∀q ∈ Qh. (13.2b)

We start by studying the convergence of the eigensolution to (13.2) to-
wards those of (13.1) and we shall discuss the rate of approximation after-
wards. We aim to apply the spectral theory recalled in Section 6: in par-
ticular, we need to define a suitable solution operator. Let us consider the
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source problem associated with (13.1) (which corresponds to problem (12.1)
with g = 0). Given f ∈ H, find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = (f, v) ∀v ∈ V, (13.3a)
b(u, q) = 0 ∀q ∈ Q. (13.3b)

Under the assumption that (13.3) is solvable for any f ∈ H and that the
component u of the solution is unique, we define T : H → V as Tf = u.
We assume that

T is compact from H to V.

The discrete counterpart of (13.3) is as follows: find uh ∈ Vh and ph ∈ Qh

such that

a(uh, v) + b(v, ph) = (f, v) ∀v ∈ Vh, (13.4a)
b(uh, q) = 0 ∀q ∈ Qh. (13.4b)

Assuming that the component uh of the discrete solution of (13.4) exists
and is unique, we can define the discrete operator Th : H → V as Tf =
uh ∈ Vh ⊂ V .

It is clear that the eigenvalue problems (13.1) and (13.2), respectively,
can be written in the equivalent form

λTu = u, λhThuh = uh.

We now introduce some abstract conditions that will guarantee the con-
vergence of Th to T in L(H,V ). It follows from the discussion of Section 6
that this is a sufficient condition for the eigenmodes convergence. We de-
note by V0 and Q0 the subspaces of V and Q, respectively, containing all
the solutions u ∈ V and p ∈ Q of (13.3) when f varies in H. In particular,
we have V0 = T (H), and the inclusion V0 ⊂ K holds true, where the kernel
K of the operator associated with the bilinear form b is defined as usual by

K = {v ∈ V : b(v, q) = 0 ∀q ∈ Q}.
We need also to introduce the discrete kernel as

Kh = {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh}.
It is well known that in general Kh �⊂ K. We shall also make use of suitable
norms in V0 and Q0, which can be defined in a canonical way as

‖v‖V0 = inf{‖f‖H : Tf = v},
‖q‖Q0 = inf{‖f‖H : q is the second component of the solution of (13.3)}.

Definition 13.1. The ellipticity in the kernel of the bilinear form a is
satisfied if there exists α > 0 such that

a(v, v) ≥ α‖v‖2
V ∀v ∈ Kh.
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It can be shown that the ellipticity in the kernel property is sufficient for
the well-posedness of the operator Th (Boffi et al. 1997, Proposition 2).

Definition 13.2. We say that the weak approximability of Q0 is satisfied
if there exists ρW (h), tending to zero as h tends to zero, such that

sup
vh∈Kh

b(vh, q)
‖vh||V

≤ ρW (h)‖q‖Q0 ∀q ∈ Q0.

Definition 13.3. We say that the strong approximability of V0 is satisfied
if there exists ρS(h), tending to zero as h tends to zero, such that, for any
v ∈ V0, there exists vI ∈ Kh with

‖v − vI‖V ≤ ρS(h)‖v‖V0 .

The next theorem says that the conditions introduced with the above def-
initions are sufficient for the eigenmode convergence of eigenvalue problems
of the first kind.

Theorem 13.4. If the ellipticity in the kernel of the bilinear form a, the
weak approximability of Q0, and the strong approximability of V0 are sat-
isfied (see Definitions 13.1, 13.2 and 13.3), then there exists ρ(h), tending
to zero as h tends to zero, such that

‖(T − Th)f‖V ≤ ρ(h)‖f‖H ∀f ∈ H. (13.5)

Proof. Take f ∈ H and consider the solutions (u, p) ∈ V0 × Q0 of (13.3)
and (uh, ph) ∈ Kh ×Qh of (13.4) (p and ph might not be unique). We need
to estimate the difference ‖(T − Th)f‖V = ‖u − uh‖V . From the strong
approximability of V0, this can be performed by bounding the difference
‖uI − uh‖V . From the ellipticity in the kernel of a and the error equations,
we have

α‖uI − uh‖2
V ≤ a(uI − uh, u

I − uh)

= a(uI − u, uI − uh) + a(u− uh, u
I − uh)

= a(uI − u, uI − uh) − b(uI − uh, p− ph)

≤ C‖uI − u‖V ‖uI − uh‖V − |b(uI − uh, p− ph)|

≤
(
C‖uI − u‖V + sup

vh∈Kh

b(vh, p− ph)
‖vh‖V

)
‖uI − uh‖V

≤
(
C‖uI − u‖V + sup

vh∈Kh

b(vh, p)
‖vh‖V

)
‖uI − uh‖V ,

which gives the required estimate thanks to the strong approximability of
V0 and the weak approximability of Q0.
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Remark 13.5. The result of Theorem 13.4 can be essentially inverted by
showing that the assumptions are necessary for the convergence in norm
(13.5). This analysis is performed in Theorem 2 of Boffi et al. (1997), under
the additional assumption that the operator T can be extended to a bounded
operator in L(V ′, V ).

Remark 13.6. So far, we have not assumed the well-posedness of the
source problems (13.3) and (13.4). Indeed, we assumed existence and unique-
ness of the first component of the solutions (u and uh, respectively) in order
to be able to define the solution operators T and Th. On the other hand, the
second component of solutions p and ph might be non-unique. Examples of
this situations (where p is unique, but ph is not) are presented at the end
of this section.

Remark 13.7. The presented result might look too strong, since we are
considering the convergence in norm from H to V . Indeed, although our
result immediately implies the convergence in norm from H into itself, it
might be interesting to investigate directly the behaviour of ‖T − Th‖ in
L(H) or L(V ). On the other hand, the analysis presented in Theorem 13.4
is quite natural, and we are not aware of applications where a sharper result
is needed.

Theorem 13.4 concerns good approximation of eigenvalues and eigenfunc-
tions, but does not answer the question of estimating the rate of conver-
gence. In most practical situations, this issue can be solved with the help
of Babuška–Osborn theory, as developed in Section 9. This task was per-
formed in Mercier et al. (1981) in the general situation of non-symmetric
eigenvalue problems in mixed form; we report here the main results of this
theory in the symmetric case (see Mercier et al. (1981, Section 5)).

Let λ be an eigenvalue of (13.1) of multiplicity m and let E ⊂ V be the
corresponding eigenspace. We denote by λ1,h, λ2,h, . . . , λm,h the discrete
eigenvalues converging to λ and by Eh the direct sum of the corresponding
eigenspaces.

The convergence of eigenfunctions is a direct application of the results of
the abstract theory and is summarized in the next theorem.

Theorem 13.8. Under the hypotheses of Theorem 13.4, there exists con-
stant C such that

δ̂(E,Eh) ≤ C‖(T − Th)|E‖L(H,H),

where the gap is evaluated in the H-norm.

Remark 13.9. The analogous estimate for the error in the norm of V can
be obtained directly from Theorem 9.3 by assuming a uniform convergence
of Th to T in L(V ). Such a convergence is usually a consequence of standard
estimates for the source problem.
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In order to estimate the convergence order for the eigenvalues, we consider
the case when problems (13.3) and (13.4) are well-posed (see Remark 13.6).
This is typically true if the standard inf-sup conditions are satisfied (Brezzi
and Fortin 1991). According to Mercier et al. (1981), we can define the oper-
ator B : H → Q as Bf = p, where p is the second component of the solution
of (13.3). Analogously, we define the discrete operator Bh : H → Qh by
Bhf = ph, with ph coming from (13.4). The results of Mercier et al. (1981,
Theorem 5.1) are rewritten in the next theorem in this particular case.

Theorem 13.10. Under the hypotheses of Theorem 13.4 and the addi-
tional assumption that the operators B and Bh are well-defined, there exists
C such that, for sufficiently small h,

|λ− λi,h| ≤ C
(
‖(T − Th)|E‖2

L(H,V )

+ ‖(T − Th)|E‖L(H,V )‖(B −Bh)|E‖L(H,Q)

)
,

(13.6)

for i = 1, . . . ,m.

We conclude this section with some applications of the developed theory.

13.1. The Stokes problem

Let Ω be an open bounded domain in R
n. The eigenvalue problem associated

with the Stokes equations fits within the developed theory with the following
definitions:

H = L2(Ω),

V = (H1
0 (Ω))n,

Q = L2
0(Ω),

a(u,v) =
∫

Ω
ε(u) : ε(v) dx,

b(v, q) =
∫

Ω
q div v dx.

It is well known that the bilinear form a is coercive in V , so the ellipticity
in the kernel property (see Definition 13.1) holds true for any finite element
choice. The weak approximability of Q0 (see Definition 13.2) is satisfied
by any reasonable approximating scheme as well. Namely, it can be easily
seen that there exists ε > 0 such that the solution space Q0 is contained
in Hε(Ω) for a wide class of domains (in particular, ε can be taken equal
to one if Ω is a convex polygon or polyhedron). The weak approximability
property then follows from standard approximation properties as follows:

|b(vh, q)| = |b(vh, q − qI)| ≤ C‖vh‖H1
0 (Ω)‖q − qI‖L2(Ω),

where qI ∈ Qh is any discrete function (recall that vh ∈ Kh).
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In this case the strong approximability of V0 is the crucial condition for
the convergence. In general V0 consists of divergence-free functions which
are in (H1+ε(Ω))n∩V if the domain is smooth enough (for a suitable ε > 0,
in particular ε = 1 if Ω is a convex polygon or polyhedron). The strong
approximability means that, for any v ∈ V0, there exists vI ∈ Kh such that

‖v − vI‖H1
0 (Ω) ≤ ρ(h)‖v‖V0 ,

with ρ(h) tending to zero as h tends to zero. This property is well known to
be valid if, for instance, the discrete space Vh discretizes V with standard
approximation properties and the classical inf-sup condition links Vh and
Qh: there exists β > 0 such that

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)
‖vh‖H1

0 (Ω)‖qh‖L2(Ω)
> β.

This implies that all inf-sup stable approximations of the Stokes problem
provide convergent discretization of the corresponding eigenvalue problem.
As for the estimation of the rate of convergence (which was not considered
in Boffi et al. (1997)), we can use Theorems 13.8 and 13.10. For instance,
using a popular stable scheme of order k such as the generalized Hood–
Taylor method (Boffi 1997), that is, continuous piecewise polynomials of
degree k and k− 1 for velocities and pressures, respectively, we get that the
order of convergence of the eigenvalues is h2k, as expected, if the domain
is smooth enough in both two and three space dimensions. Indeed, looking
at the terms appearing in formula (13.6), we essentially have to estimate
two items: ‖(T − Th)|E‖L(H,V ) and ‖(B −Bh)|E‖L(H,Q). The classical error
analysis for the source problem gives

‖u − uh‖V + ‖p− ph‖Q ≤ Chk‖f‖H

if we assume that we have no limitation in the regularity of the solution
(u, p). This implies

‖(T − Th)|E‖L(H,V ) = O(hk),

‖(B −Bh)|E‖L(H,Q) = O(hk),

which gives the result.
For the eigenfunctions, the result is similar. In particular, Theorem 13.8

and Remark 13.9 give that the gap between discrete and continuous eigen-
functions is of optimal order hk+1 in L2(Ω) and hk in H1(Ω).

On the other hand, Theorem 13.4 allows us to conclude that we have the
convergence of the eigenvalues even in cases when the source problem might
not be solvable. This is the case, for instance, of the widely studied two-
dimensional Q1–P0 element: that is, the velocities are continuous piecewise
bilinear functions and the pressures are piecewise constants. It is well known
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that this element does not satisfy the inf-sup condition: a checkerboard
spurious mode is present and the filtered inf-sup constant tends to zero as
O(h) (Johnson and Pitkäranta 1982). On the other hand, it can be proved
that the hypotheses of Theorem 13.4 are satisfied (Boffi et al. 1997), so the
eigenvalues are well approximated in spite of the fact that the approximation
of the source problem is affected by spurious pressure modes.

13.2. Dirichlet problem with Lagrange multipliers

Following Babuška (1973), the Dirichlet problem with Lagrange multipliers
can be studied with the theory developed in this section and the following
identifications. Let Ω be a two-dimensional polygonal domain and define

H = L2(Ω),

V = H1(Ω),

Q = H−1/2(∂Ω),

a(u, v) =
∫

Ω
gradu · grad v dx,

b(v, µ) = 〈µ, v|∂Ω〉,

where 〈·, ·〉 denotes the duality between H1/2(∂Ω) and H−1/2(∂Ω).
Given a regular decomposition of Ω and a regular decomposition of ∂Ω,

we let Vh be the space of continuous piecewise polynomials of degree k1

defined in Ω, and let Qh be the space of continuous piecewise polynomials
of degree k2 defined in ∂Ω, with k1 ≥ 0 and k2 ≥ 0. It turns out that
the weak approximability condition (see Definition 13.2) and the strong
approximability condition (see Definition 13.3) are satisfied for any choice of
triangulation and degrees k1 and k2. On the other hand, the ellipticity in the
kernel property (see Definition 13.1) is satisfied under the weak assumption
that Qh contains µh such that 〈µh, 1〉 �= 0.

It is interesting to notice that in this example we have good convergence
of the discretized eigenvalue problem under very general assumptions, while
the corresponding source problem requires rather strict compatibility con-
ditions between the meshes of Ω and ∂Ω, and k1 and k2.

14. Problems of the second type

Let Σ, U , and H be Hilbert spaces, suppose that the standard inclusions

U ⊂ H  H ′ ⊂ U ′

hold with continuous and dense embeddings, and let us consider two bilinear
forms a : Σ×Σ → R and b : Σ×U → R. We are interested in the following
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symmetric eigenvalue problem: find λ ∈ R and u ∈ U with u �= 0 such that,
for some σ ∈ Σ,

a(σ, τ) + b(τ, u) = 0 ∀τ ∈ Σ, (14.1a)
b(σ, v) = −λ(u, v) ∀v ∈ U, (14.1b)

where (·, ·) denotes the scalar product in H. We assume that a and b
are continuous and that a is symmetric and positive semidefinite. The
hypotheses on a imply that the seminorm

|v|a = (a(v, v))1/2

is well-defined, so that we have

a(u, v) ≤ |u|a|v|a ∀u, v ∈ U.

Moreover, we assume that the following source problem associated with
(14.1) has a unique solution (σ, u) ∈ Σ × U to

a(σ, τ) + b(τ, u) = 0 ∀τ ∈ Σ, (14.2a)
b(σ, v) = −〈g, v〉 ∀v ∈ U (14.2b)

satisfying the a priori bound

‖σ‖Σ + ‖u‖U ≤ C‖g‖U ′ ,

where the symbol 〈·, ·〉 in (14.2) denotes the duality pairing between U ′

and U .
Given finite-dimensional subspaces Σh ⊂ Σ and Uh ⊂ U , the Galerkin

discretization of (14.1) reads as follows: find λh ∈ R and uh ∈ Uh with
uh �= 0 such that, for some σh ∈ Σh,

a(σh, τ) + b(τ, uh) = 0 ∀τ ∈ Σh, (14.3a)
b(σh, v) = −λh(uh, v) ∀v ∈ Uh. (14.3b)

Following the same lines as the previous section, we start by analysing
how the solutions of (14.3) converge towards those of (14.1), and postpone
the question of the rate of convergence to the end of this section.

We define the solution operator T : H → H by Tg = u ∈ U ⊂ H, where
u ∈ U is the second component of the solution to (14.2). It is clear that
when g belongs to H the duality pairing in the right-hand side of (14.2) is
equivalent to the scalar product (g, v).

The discrete counterpart of (14.2) when g belongs to H is as follows: find
(σh, uh) ∈ Σh × Uh such that

a(σh, τ) + b(τ, uh) = 0 ∀τ ∈ Σh, (14.4a)
b(σh, v) = −(g, v) ∀v ∈ Uh. (14.4b)

We suppose that the second component uh of the solution of (14.4) exists
and is unique, so we can define the discrete solution operator Th : H → H
as Thg = uh ∈ Uh ⊂ U ⊂ H.
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We now introduce some abstract conditions that will be used in an initial
theorem in order to show the convergence of Th to T in L(H,H) and, in a
second theorem, in L(H,U). According to the results of Section 9, this is
enough to show the convergence of the eigensolutions of (14.3) towards those
of (14.1). We let Σ0 and U0 denote the subspaces of Σ and U , respectively,
containing all solutions σ ∈ Σ and u ∈ U of (14.2) when g varies in H.
In particular, we have U0 = T (H). We shall also make use of the space
Σ0′ ⊂ Σ containing the second components of the solution σ ∈ Σ of (14.2)
when g varies in U ′. The spaces Σ0, U0, and Σ0′ will be endowed with their
natural norms:

‖τ‖Σ0 = inf{‖g‖H : τ is solution of (14.2) with datum g},
‖v‖U0 = inf{‖g‖H : Tg = v},
‖τ‖Σ0′ = inf{‖g‖U ′ : τ is solution of (14.2) with datum g}.

Finally, the discrete kernel is given by

Kh = {τh ∈ Σh : b(τh, v) = 0 ∀v ∈ Uh}.

Definition 14.1. We say that the weak approximability of U0 with respect
to a is satisfied if there exists ρW (h), tending to zero as h tends to zero,
such that

b(τh, v) ≤ ρW (h)|τh|a‖v‖U0 ∀v ∈ U0 ∀τh ∈ Kh.

Definition 14.2. We say that the strong approximability of U0 is satisfied
if there exists ρS(h), tending to zero as h tends to zero, such that, for every
v ∈ U0, there exists vI ∈ Uh such that

‖v − vI‖U ≤ ρS(h)‖v‖U0 .

Remark 14.3. The same terms, weak and strong approximability, were
used in the framework of problems of the first kind (see Definitions 13.2
and 13.3) and of the second kind (see Definitions 14.1 and 14.2). In the
applications, it should be clear from the context which definition the terms
refer to.

A powerful and commonly used tool for the analysis of mixed approx-
imation is the Fortin operator (Fortin 1977), that is, a linear operator
Πh : Σ0 → Σh that satisfies

b(τ − Πhτ, v) = 0 ∀τ ∈ Σ0 ∀v ∈ Uh. (14.5)

Definition 14.4. A bounded Fortin operator is a Fortin operator that can
be extended from Σ0 to Σ0′ and that is uniformly bounded in L(Σ0′ ,Σ).
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Definition 14.5. The Fortid condition is satisfied if there exists a Fortin
operator which converges to the identity in the following sense. There exists
ρF (h), tending to zero as h tends to zero, such that

|σ − Πhσ|a ≤ ρF (h)‖σ‖Σ0 ∀σ ∈ Σ0.

The next theorem presents sufficient conditions for good approximation
of the eigensolutions of (14.3) towards those of (14.1).

Theorem 14.6. If the Fortid condition, the weak approximability of U0

with respect to a, and the strong approximability of U0 are satisfied (see
Definitions 14.5, 14.1 and 14.2), then there exists ρ(h), tending to zero as h
tends to zero, such that

‖(T − Th)g‖H ≤ ρ(h)‖g‖H ∀g ∈ H.

Proof. Let g be in H and consider the solution (σ, u) of (14.2). In par-
ticular, we have u = Tg. Let us define uh = Thg and let σh ∈ Σh be
such that (σh, uh) solves (14.4) (such a σh might not be unique). Using a
duality argument, let (σ(h), u(h)) ∈ Σ × U be the solution of (14.2) with
g = u − uh ∈ U ⊂ H. By the definition of the norm in Σ0, we have
‖σ(h)‖Σ0 ≤ ‖u− uh‖H . Moreover,

‖u− uh‖2
H = (u− uh, u− uh) = −b(σ(h), u− uh)

= b(σ(h) − Πhσ(h), u) + b(Πhσ(h), u− uh)

= a(σ, σ(h) − Πhσ(h)) + a(σ − σh,Πhσ(h))

≤ |σ|a|σ(h) − Πhσ(h)|a + |σ − σh|a|Πhσ(h)|a
≤ |σ|a|σ(h) − Πhσ(h)|a + C|σ − σh|a‖σ(h)‖Σ0

≤ |σ|aρF (h)‖σ(h)‖Σ0 + C|σ − σh|a‖σ(h)‖Σ0

≤ (ρF (h)|σ|a + C|σ − σh|a)‖u− uh‖H ,

where ρF (h) was introduced in Definition 14.5. This implies

‖u− uh‖H ≤ ρF (h)|σ|a + C|σ − σh|a.

It remains to estimate the term |σ − σh|a, which we do by triangular
inequality after summing and subtracting Πhσ. Since we assumed the Fortid
condition, it is enough to bound |Πhσ − σh|a. We notice that |Πhσ − σh|a
belongs to Kh; we have

|Πhσ − σh|2a = a(Πhσ − σ,Πhσ − σh) + a(σ − σh,Πhσ − σh)

≤ |Πhσ − σ|a|Πhσ − σh|a − b(Πhσ − σh, u− uh)

= |Πhσ − σ|a|Πhσ − σh|a − b(Πhσ − σh, u)

≤ |Πhσ − σh|a(|Πhσ − σ|a + ρW (h)‖u‖U0),
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where ρW (h) was introduced in Definition 14.1. This gives

|σ − σh|a ≤ 2|Πhσ − σ|a + ρW (h)‖u‖U0

≤ 2ρS(h)‖σ‖Σ0 + ρW (h)‖u‖U0 ,

where ρS(h) was introduced in Definition 14.2. The theorem then follows
from the definition of the norms of Σ0 and U0.

Before moving to the estimate of the rate of convergence for eigenvalues
and eigenfunctions, we present a slight modification of the previous theorem
which implies the convergence of Th to T in L(H,U).

Theorem 14.7. If there exists a bounded Fortin operator (see Defini-
tion 14.4) and if the Fortid condition, the weak approximability of U0 and
the strong approximability of U0 are satisfied (see Definitions 14.5, 14.1
and 14.2), then there exists ρ(h), tending to zero as h goes to zero, such
that

‖(T − Th)g‖U ≤ ρ(h)‖g||H ∀g ∈ H.

Proof. Let g be in H and consider the solution (σ, u) of (14.2). In par-
ticular, we have u = Tg. Let us define uh = Thg and let σh be such that
(σh, uh) solves (14.4) (such a σh might not be unique). Let g(h) ∈ U ′ be
such that 〈g(h), u−uh〉 = ‖u−uh‖U and ‖g(h)‖U ′ = 1. Let σ(h) be the first
component of the solution to (14.2) with datum g(h), so that σ(h) ∈ Σ0′

and ‖σ(h)‖Σ0′ ≤ ‖g(h)‖U ′ = 1. We have

‖u− uh‖U = 〈g(h), u− uh〉 = −b(σ(h), u− uh)

= −b(σ(h) − Πhσ(h), u− uh) − b(Πhσ(h), u− uh)

= −b(σ(h) − Πhσ(h), u− uI) + a(σ − σh,Πhσ(h)).

We estimate the two terms on the right-hand side separately:

b(σ(h) − Πhσ(h), u− uI) ≤ C‖σ(h) − Πhσ(h)‖Σ‖u− uI‖U

≤ C(‖σ(h)‖Σ + ‖Πhσ(h)‖Σ)‖u− uI‖U

and
a(σ − σh,Πhσ(h)) ≤ |Πhσ(h)|a|σ − σh|a.

The proof is then easily concluded from the definition of the norms in
Σ0, U0, Σ0′ , and by using the strong approximability to bound ‖u − uI‖U ,
the boundedness of the Fortin operator and the definition of σ(h) to bound
‖Πhσ(h)‖Σ and |Πhσ(h)|a, and the same argument as in the proof of The-
orem 14.6 to estimate |σ − σh|a.

Remark 14.8. The results of Theorems 14.6 and 14.7 can be essentially
inverted by stating that suitable norm convergences of Th to T imply the
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three main conditions: weak approximability of Definition 14.1, strong ap-
proximability of Definition 14.2, and Fortid condition of Definition 14.5.
We refer the interested reader to Boffi et al. (1997, Theorems 5–7) for the
technical details.

We now give basic estimates for the rate of convergence of eigenvalues and
eigenfunctions in the spirit of Mercier et al. (1981). Let λ be an eigenvalue
of (14.1) of multiplicity m and let E ⊂ U be the corresponding eigenspace.
We denote by λ1,h, λ2,h, . . . , λm,h the discrete eigenvalues converging to λ
and by Eh the direct sum of the corresponding eigenspaces.

The eigenfunction convergence follows directly from the results of the
abstract theory presented in Section 6.

Theorem 14.9. Under the hypotheses of Theorem 14.6 or 14.7, there is
a constant C such that

δ̂(E,Eh) ≤ C‖T − Th‖L(H,H),

where the gap is evaluated in the H-norm.

Remark 14.10. The same comment as in Remark 13.9 applies to this
situation as well. In particular, the convergence of the eigenfunctions in the
norm of U would follow from a uniform convergence of Th to T in L(V ).

In order to estimate the rate of convergence for the eigenvalues, we in-
voke Mercier et al. (1981, Theorem 6.1), where the more general situation
of non-symmetric problems is discussed. We assume that the source prob-
lems (14.2) and (14.4) are well-posed (with g ∈ H), so that we can define
the operator A : H → Σ associated with the first component of the solution
as Ag = σ. Analogously, Ah : H → Σh denotes the discrete operator asso-
ciated to the first component of the solution to problem (14.4): Ahg = σh.

Theorem 14.11. Under the hypotheses of Theorem 14.6 or 14.7 and the
additional assumption that the operators A and Ah are well-defined, there
exists C such that, for sufficiently small h,

|λ− λi,h| ≤ C
(
‖(T − Th)|E‖2

L(H,U)

+ ‖(T − Th)|E‖L(H,U)‖(A−Ah)|E‖L(H,Σ)

+ ‖(A−Ah)|E‖2
L(H,H)

)
,

for i = 1, . . . ,m.

We conclude this section with the application of the presented theory to
two fundamental examples: the Laplace eigenvalue problem and the bihar-
monic problem.
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14.1. The Laplace problem

Let Ω be an open bounded domain in R
n. The eigenvalue problem associated

with the Laplace operator fits within the developed theory with the following
definitions:

H = L2(Ω),

Σ = H(div; Ω),

U = L2(Ω),

a(σ, τ ) =
∫

Ω
σ · τ dx,

b(τ , v) =
∫

Ω
v div τ dx.

It follows, in particular, that the seminorm induced by the form a is indeed
the L2(Ω)-norm,

| · |a = ‖ · ‖L2(Ω).

The solution spaces Σ0 and U0 contain functions with higher regularity
than Σ and U : for a wide class of domains Ω there exists ε > 0 such that
Σ0 ⊂ Hε(Ω)n and U0 ⊂ H1+ε(Ω) (if Ω is a convex polygon or polyhedron,
the inclusions hold with ε = 1). We should, however, pay attention to
the fact that functions σ in Σ0 do not have a more regular divergence than
div σ ∈ L2(Ω), since from (14.2) we have div σ = −g, and g varies in L2(Ω).

Remark 14.12. The presented setting applies to the Dirichlet problem
for Laplace operator. With natural modifications the Neumann problem
could be studied as well: Σ = H0(div; Ω), U = L2

0(Ω).

Several choices of discrete spaces have been proposed for the approxima-
tion of Σ and U in two and three space dimensions. In general, Uh is defined
as div(Σh), where Σh is a suitable discretization of H(div; Ω). RT (Raviart
and Thomas 1977, Nédélec 1980), BDM (Brezzi et al. 1985, Brezzi, Douglas
and Marini 1986), BDFM (Brezzi et al. 1987b) elements are possible choices.
On quadrilateral meshes, ABF elements (Arnold et al. 2005) are a possible
solution in order to avoid the lack of convergence arising from the distortion
of the elements. In this case the identity div(Σh) = Uh is no longer true
and the analysis of convergence requires particular care (Gardini 2005).

From the equality div(Σh) = Uh, it follows that the discrete kernel Kh

contains divergence-free functions, so that the weak approximability (see
Definition 14.1) is satisfied:

b(τ h, v) = b(τ h, v − vI) ≤ C‖τ h‖H(div;Ω)‖v − vI‖L2(Ω)

= C‖τ h‖L2(Ω)‖v − vI‖L2(Ω),

for τ h ∈ Kh, v ∈ U0, and vI ∈ Uh suitable approximation of v.
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Strong approximability (see Definition 14.2) is a consequence of standard
approximation properties in U0.

It turns out that the main condition for good approximation of the
Laplace eigenvalue problem is the Fortid condition (see Definition 14.5).
For the schemes mentioned so far (RT, BDM, BDFM), it is not difficult
to see that the standard interpolation operator (Brezzi and Fortin 1991) is
indeed a Fortin operator (see Definition 14.5): in general, if we denote by
τ I the interpolant of τ , we have

b(τ − τ I , v) =
∫

Ω
v div(τ − τ I) dx =

∑
K

∫
K
v div(τ − τ I) dx

= −
∫

K
grad v · (τ − τ I) dx +

∫
∂K

v(τ − τ I) · nds,

and the degrees of freedom for τ I are usually chosen so that the last two
terms vanish for all v ∈ Uh. The Fortid condition (see Definition 14.5) is
then also a consequence of standard approximation properties. We explicitly
notice that a Fortid condition where the term |σ−Πhσ|a is replaced by ‖σ−
Πhσ‖Σ does not hold in this situation, since this would imply an estimate
for ‖τ − τ I‖H(div;Ω), with τ ∈ Σ0, but this cannot provide any uniform
bound, since div τ is a generic element of L2(Ω).

We shall return to this example in Section 15.

14.2. The biharmonic problem

For the sake of simplicity, let Ω be a convex polygon in R
2. The biharmonic

problem
∆2u = −g in Ω,

u =
∂u

∂n
= 0 on ∂Ω

has been widely studied in the framework of mixed approximations. In
particular, it fits within our setting with the following choices:

H = L2(Ω),

Σ = H1(Ω),

U = H1
0 (Ω),

a(σ, τ) =
∫

Ω
στ dx,

b(τ, v) = −
∫

Ω
grad τ · grad v dx,

where the auxiliary variable σ = −∆u has been introduced. It follows that
the seminorm associated with the bilinear form a is the L2(Ω)-norm

| · |a = ‖ · ‖L2(Ω).
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A possible discretization of the biharmonic problem consists in an equal-
order approximation, where Σh and Uh are made of continuous piecewise
polynomials of degree k (Glowinski 1973, Mercier 1974, Ciarlet and Raviart
1974).

In this case the most delicate condition to be checked is weak approx-
imability (see Definition 14.1). Indeed, strong approximability (see Defi-
nition 14.2) is a simple consequence of standard approximation properties.
Given σ ∈ Σ0, a Fortin operator (14.5) can be defined by Πhσ ∈ Σh and

(gradΠhσ,grad τ) = (gradσ,grad τ) ∀τ ∈ Σh.

It is clear that the Fortid condition (see Definition 14.5) holds true.
A direct proof of the weak approximability property requires an inverse

estimate (which is valid, for instance, if the mesh is quasi-uniform) and
k ≥ 2:

b(τ, v) = (grad τ,grad v) = (grad τ,grad(v − vI))

≤ Ch−1‖τ‖L2(Ω)h
2‖v‖H3(Ω).

A more refined analysis (Scholz 1978) shows that the weak approximability
property is valid for k = 1 as well.

15. Inf-sup condition and eigenvalue approximation

In the last section of this part we review the connections between the condi-
tions for good approximation of a source mixed problem (inf-sup conditions)
and the conditions for good approximation of the corresponding eigenvalue
problem in mixed form (see Sections 13 and 14).

Going back to the notation used at the beginning of Part 3 (the discrete
spaces will be denoted by Φh ⊂ Φ and Ξh ⊂ Ξ), we consider as the two
keystones for the approximation of the source problem (12.1) the ellipticity
in the kernel property : there exists α > 0 such that

a(ϕ,ϕ) ≥ α‖ϕ‖2
Φ ∀ϕ ∈ Kh, (15.1)

where
Kh = {ϕ ∈ Φh : b(ϕ, ξ) = 0 ∀ξ ∈ Ξh}

and the inf-sup condition: there exists β > 0 such that

inf
ξ∈Ξh

sup
ϕh∈Φh

b(ϕ, ξ)
‖ϕ‖Φ‖ξ‖Ξ

≥ β (15.2)

(Brezzi and Fortin 1991). The ellipticity in the kernel might actually be
weakened and written in the form of an inf-sup condition as well, but for
our purposes, in the case of symmetric problems, ellipticity in the kernel is
a quite general condition.
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The conditions presented in Sections 13 and 14 involve quantities other
than simply ellipticity in the kernel and the inf-sup condition. Loosely
speaking, it turns out that the conditions for good approximation of eigen-
value problems of the first kind require more than ellipticity in the kernel
but a weaker inf-sup condition, while the conditions for good approximation
of eigenvalue problems of the second kind require the opposite: a stronger
inf-sup condition and less than ellipticity in the kernel.

The aim of this section is to review how the conditions introduced in Sec-
tions 13 and 14 are actually not equivalent to the ellipticity in the kernel
and the inf-sup condition. This is not surprising, for several reasons. First
of all, the conditions for the source problem refer to equation (12.1), where
the right-hand side consists of the generic functions f and g, which are
present in both equations of the mixed problem; in contrast, the eigenvalue
problems (13.1) and (14.1) are of different types, since in one equation the
right-hand side vanishes. Moreover, there is an intrinsic difference between
source problem and eigenvalue problem: the convergence of a source prob-
lem is usually reduced to a pointwise estimate (i.e., for a generic right-hand
side we look for a discrete solution which converges to the continuous one),
while the convergence of the eigenvalue problem is related to a uniform
estimate (see equation (7.8), for instance).

The uniform convergence is usually implied by suitable compactness as-
sumptions and standard pointwise convergence. In the case of a mixed
problem, it may be that compactness is not enough to turn pointwise con-
vergence into uniform convergence (see the discussion at the beginning of
Part 3 and, in particular, the definition of the solution operator T in (12.2)).
A typical example of this situation is the Laplace eigenvalue problem in
mixed form, where the operator (12.2) is not compact. It may occur in this
situation that ellipticity in the kernel and the inf-sup condition hold true,
while the eigenvalues are not correctly approximated. We recall an impor-
tant counter-example (Boffi et al. 2000a), already mentioned in Section 5 in
the framework of Maxwell’s eigenvalue problem (see Table 5.3).

We consider the Laplace eigenvalue problem in mixed form: find λ ∈ R

and σ ∈ H(div; Ω) such that, for u ∈ L2(Ω),

(σ, τ ) + (div τ , u) = 0 ∀τ ∈ H(div; Ω), (15.3a)

(div σ, v) = −λ(u, v) ∀v ∈ L2(Ω). (15.3b)

Its approximation (Σh ⊂ H(div; Ω), Uh ⊂ L2(Ω)) is then as follows: find
λh ∈ R and σh ∈ Σh such that, for uh ∈ Uh,

(σh, τ ) + (div τ , uh) = 0 ∀τ ∈ Σh, (15.4a)

(div σh, v) = −λh(uh, v) ∀v ∈ Uh. (15.4b)

Let us consider a square domain Ω =]0, π[×]0, π[ and a criss-cross mesh



90 D. Boffi

sequence such as that presented in Figure 3.9. Let Σh be the space of
continuous piecewise linear finite elements in each component and let Uh be
the space containing all the divergences of the elements of Σh. It turns out
that the equality Uh = div(Σh) easily implies that the ellipticity in the kernel
property (15.1) is satisfied. Moreover, it can be proved that the proposed
scheme satisfies the inf-sup condition (15.2) as well (Boffi et al. 2000a, Fix,
Gunzburger and Nicolaides 1981).

Remark 15.1. Those familiar with the Stokes problem might recognize
the inf-sup condition (15.2). It is well known that the P1 − P0 element
does not provide a stable Stokes scheme. On the other hand, we are using
a very particular mesh sequence (the inf-sup constant would tend to zero
on a general mesh sequence) and a norm different to that in the case of
the Stokes problem: here we consider the H(div; Ω)-norm, and not the full
H1(Ω)-norm (even on the criss-cross mesh sequence, the inf-sup constant
for the Stokes problem tends to zero when the H1(Ω)-norm is considered).

The classical theory implies that a quasi-optimal error estimate holds true
for the approximation of the source problem associated with problem (15.3).
More precisely, we consider the following source problem and its approxi-
mation: given g ∈ L2(Ω), find (σ, u) ∈ H(div; Ω) × L2(Ω) such that

(σ, τ ) + (div τ , u) = 0 ∀τ ∈ H(div; Ω), (15.5a)

(div σ, v) = −(g, v) ∀v ∈ L2(Ω), (15.5b)

and find (σh, uh) ∈ Σh × Uh such that

(σh, τ ) + (div τ , uh) = 0 ∀τ ∈ Σh, (15.6a)

(div σh, v) = −(g, v) ∀v ∈ Uh. (15.6b)

Then we have the following error estimate for the solution of problem (15.5):

‖σ − σh‖H(div;Ω) + ‖u− uh‖L2(Ω)

≤ C inf
τh∈Σh
vh∈Uh

(
‖σ − τ h‖H(div;Ω) + ‖u− vh‖L2(Ω)

)
. (15.7)

On the other hand, with our choice for the discrete spaces, problem (15.4)
does not provide a good approximation of problem (15.3). The results of the
computations are shown in Table 15.1. After a transient situation for the
smallest meshes, a clear second order of convergence is detected towards the
eigenvalues tagged as ‘Exact’. Unfortunately, some of them (emphasized by
the exclamation mark) do not correspond to eigenvalues of the continuous
problem (15.3). This situation is very close to that presented in Table 5.3;
it can be observed that the only difference between this computation and
that of Section 5 consists in the boundary conditions.



Eigenvalue problems 91

Table 15.1. Eigenvalues computed with nodal elements on the criss-cross mesh
sequence of triangles of Figure 3.9.

Exact Computed (rate)
N = 2 N = 4 N = 8 N = 16 N = 32

2 2.2606 2.0679 (1.9) 2.0171 (2.0) 2.0043 (2.0) 2.0011 (2.0)
5 4.8634 5.4030 ( 1.6) 5.1064 (1.9) 5.0267 (2.0) 5.0067 (2.0)
5 5.6530 5.4030 (0.7) 5.1064 (1.9) 5.0267 (2.0) 5.0067 (2.0)

!→ 6 5.6530 5.6798 (0.1) 5.9230 (2.1) 5.9807 (2.0) 5.9952 (2.0)
8 11.3480 9.0035 (1.7) 8.2715 (1.9) 8.0685 (2.0) 8.0171 (2.0)

10 11.3480 11.3921 ( 0.0) 10.4196 (1.7) 10.1067 (2.0) 10.0268 (2.0)
10 12.2376 11.4495 (0.6) 10.4197 (1.8) 10.1067 (2.0) 10.0268 (2.0)
13 12.2376 11.6980 ( 0.8) 13.7043 (0.9) 13.1804 (2.0) 13.0452 (2.0)
13 12.9691 11.6980 ( 5.4) 13.7043 (0.9) 13.1804 (2.0) 13.0452 (2.0)

!→15 13.9508 15.4308 (1.3) 13.9669 ( 1.3) 14.7166 (1.9) 14.9272 (2.0)
!→15 16.1534 15.4308 (1.4) 13.9669 ( 1.3) 14.7166 (1.9) 14.9272 (2.0)

17 16.1534 17.0972 (3.1) 18.1841 ( 3.6) 17.3073 (1.9) 17.0773 (2.0)
17 18.2042 18.1841 (0.0) 17.3073 (1.9) 17.0773 (2.0)
18 18.3067 19.3208 ( 2.1) 18.3456 (1.9) 18.0867 (2.0)
20 20.1735 21.5985 ( 3.2) 20.4254 (1.9) 20.1070 (2.0)
20 20.1735 21.6015 ( 3.2) 20.4254 (1.9) 20.1070 (2.0)

!→24 27.5131 22.7084 (1.4) 23.6919 (2.1) 23.9230 (2.0)
25 27.6926 24.8559 (4.2) 25.6644 ( 2.2) 25.1672 (2.0)
25 28.0122 24.8586 (4.4) 25.6644 ( 2.2) 25.1672 (2.0)
26 30.4768 27.3758 (1.7) 26.7152 (0.9) 26.1805 (2.0)

From the computed eigenvalues, it is clear that the conclusions of nei-
ther Theorem 14.6 nor 14.7 hold. Let us try to better understand this
phenomenon.

Let us forget for a moment the theory developed in Section 14 and try
to use the argument of Proposition 7.6, to see whether the pointwise con-
vergence arising from the stability of the source problem approximation
implies the required uniform convergence. One of the main issues concerns
the appropriate definition of the solution operator.

A first possible (but not useful) definition for the solution operator is
given by TΣU : L2(Ω) × L2(Ω) → L2(Ω) × L2(Ω), T (f, g) = (σ, u), where
(σ, u) is the solution of (15.5) with datum g. We can define the discrete
solution operator TΣU,h in a natural way and try to show that the hypotheses
of Proposition 7.6 are satisfied. With the notation of Section 7, we have
H = L2(Ω)×L2(Ω) and V = H(div; Ω)×L2(Ω). Unfortunately, it turns out
that the operator TΣU is not compact in L(L2(Ω)×L2(Ω),H(div; Ω)×L2(Ω))
as required; indeed, the component σ of the solution of (15.5) cannot be in
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a compact subset of H(div; Ω) since the divergence of σ is equal to g which
is only in L2(Ω). We can try to use the modified version of Proposition 7.6
introduced in Remark 7.5; however, this does not help since the operator
TΣU is not compact in L(H(div; Ω) × L2(Ω),H(div; Ω) × L2(Ω)) either, for
the same reason as before (div σ = −g ∈ L2(Ω)). On the other hand, the
error estimate (15.7) does not give any significant improvement: we have

‖(TΣU − TΣU,h)(f, g)‖H(div;Ω)×L2(Ω)

≤ C inf
τh∈Σh
vh∈Uh

(
‖σ − τh‖H(div;Ω) + ‖u− vh‖L2(Ω)

)
.

For the same reason as in the previous comments (div σ = −g ∈ L2(Ω)), we
cannot hope to get a uniform bound of the term ‖σ−τh‖H(div;Ω), for which
a higher regularity of div σ would be required.

According to Section 14, now let T : L2(Ω) → L2(Ω) be the operator
associated with the second component of the solution to problem (15.5):
Tg = u; let Th : L2(Ω) → L2(Ω) be its discrete counterpart, Thg = uh. A
direct application of estimate (15.7) gives, as before,

‖(T − Th)g‖L2(Ω) ≤ C inf
τh∈Σh
vh∈Uh

(
‖σ − τ h‖H(div;Ω) + ‖u− vh‖L2(Ω)

)
.

Again, we cannot hope to obtain a uniform convergence since div σ is only
in L2(Ω). Indeed, the profound meaning of Theorems 14.6 and 14.7 in this
particular situation is that we try to obtain a uniform estimate by bounding
the term σ − σh in L2(Ω) and not in H(div; Ω); this task is performed by
the Fortin operator through the Fortid condition (see Definition 14.5).

A more careful analysis (Boffi et al. 2000a) of the particular scheme we
discuss in this section (P1−P0 element on the criss-cross mesh), shows that,
indeed, Th does not converge uniformly to T .

Proposition 15.2. There exists a sequence {v∗h} with v∗h ∈ Uh such that
‖v∗h‖L2(Ω) = 1 for any h and ‖(T − Th)v∗h‖L2(Ω) does not tend to zero as h
tends to zero.

Proof. We follow the proof of Boffi et al. (2000a, Theorem 5.2). Qin (1994),
following an idea of Boland and Nicolaides (1985), showed that there exists
a sequence {ṽh} such that

(div τ h, ṽh) ≤ C‖τh‖L2(Ω)‖ṽh‖L2(Ω) ∀τ h ∈ Σh.

Defining v∗h = ṽh/‖ṽh‖L2(Ω) gives

(div τh, v
∗
h) ≤ C‖τ h‖L2(Ω) ∀τ h ∈ Σh. (15.8)

It turns out that v∗h has zero mean value in each square macro-element com-
posed of four triangles (it is indeed constructed by using a suitable checker-
board structure) and hence its weak limit is zero. From the compactness
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of T it follows that Tv∗h tends to zero strongly in L2(Ω). By the definition
of Th, we have that Thv

∗
h is the second component uh of the solution to the

following mixed problem:

(σh, τ ) + (div τ , uh) = 0 ∀τ ∈ Σh,

(div σh, v) = −(v∗h, v) ∀v ∈ Uh.

We have

|(div σh, uh)| = |(v∗h, uh)| ≤ ‖uh‖L2(Ω),

|(div σh, uh)| = ‖σh‖2
L2(Ω).

Moreover, from (15.8) we have

‖σh‖L2(Ω) ≥
1
C
|(div σh, v

∗
h)| =

1
C
.

Putting together the last equations gives the final result,

‖uh‖L2(Ω) ≥
1
C2

.
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PART FOUR

The language of differential forms

The use of differential forms and homological techniques for the analysis of
the finite element approximation of partial differential equations has become
a popular and effective tool in the recent literature.

The aim of this part is to provide the reader with some basic notions about
the de Rham complex and its role in the analysis of eigenvalue problems
arising from partial differential equations. The experience of the author in
this field comes from the approximation of Maxwell’s eigenvalue problem;
we shall, however, see how the abstract setting can be used for the analysis
of a wider class of applications. For a thorough introduction to this subject
in the framework of the numerical analysis of partial differential equations,
we refer the interested reader to Arnold, Falk and Winther (2006b).

16. Preliminaries

In this section we recall the definitions of the main entities we are going to
use in our analysis.

For any integer k with 0 ≤ k ≤ n, let Λk = Λk(Rn) be the vector space of
alternating k-linear forms on R

n, so dim(Λk) =
(
n
k

)
. The Euclidean norm

of R
n induces a norm on Λk for any k and the wedge product ‘∧’ acts from

Λi×Λj to Λi+j . Given a domain Ω ⊂ R
n, we denote by C∞(Ω,Λk) the space

of smooth differential forms of order k in Ω and by Λ(Ω) the corresponding
anti-commutative graded algebra

Λ(Ω) =
⊕

k

C∞(Ω,Λk).

An exterior derivative d : Λ(Ω) → Λ(Ω) is a linear graded operator of
degree one, that is, for any k, we are given a map

dk : C∞(Ω,Λk) → C∞(Ω,Λk+1).

We assume that dk+1 ◦ dk = 0, that is, d is a differential.1

The set L2(Ω,Λk) is the space of differential k-forms on Ω with square in-
tegrable coefficients in their canonical basis representation; its inner product
is given by

(u,v) =
∫

Ω
u ∧ �v ∀u,v ∈ L2(Ω,Λk),

1 The external derivative we are going to use can be naturally defined as follows:
given ω ∈ C∞(Ω, Λk), dkωx(v1, . . . , vk+1) =

Pk+1
j=1 (−1)j+1∂vj ωx(v1, . . . , v̂j , . . . , vk+1)

(Arnold et al. 2006b, p. 15)
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where � denotes the Hodge star operator mapping k-forms to (n − k)-
forms. Differential k-forms with different regularity can be considered by
using standard Sobolev spaces: the corresponding spaces will be denoted by
Hs(Ω,Λk). The main spaces of our construction are based on the exterior
derivative

H(dk; Ω) = {v ∈ L2(Ω,Λk) : dkv ∈ L2(Ω,Λk+1)},

and are endowed with their natural scalar product

(u,v)2H(dk;Ω) = (u,v)2L2(Ω,Λk) + (dku, dkv)2L2(Ω,Λk+1) ∀u,v ∈ H(dk; Ω).

It can be shown that a trace operator tr∂Ω is well defined on H(dk; Ω),
so that it makes sense to introduce the subspace of H(dk; Ω) consisting of
differential forms with vanishing boundary conditions:

H0(dk; Ω) = {v ∈ H(dk; Ω) : tr∂Ω v = 0}.

The coderivative operator δk : C∞(Ω,Λk) → C∞(Ω,Λk−1) is defined by

δk = �dn−k�,

and is the formal adjoint of dk−1. Indeed, we have the following generaliza-
tion of the integration by parts:

(dk−1p,u) = (p, δku) + 〈tr∂Ω p, tr∂Ω �u〉.

We can define Hilbert spaces associated with the coderivative

H(δk; Ω) = {v ∈ L2(Ω,Λk) : δkv ∈ L2(Ω,Λk−1)}.

For u ∈ H(δk; Ω) we have �u ∈ H(dn−k; Ω), so it makes sense to consider
tr∂Ω(�u) and to define H0(δk; Ω) as �H0(dn−k; Ω), that is,

H0(δk; Ω) = {v ∈ H(δk; Ω) : tr∂Ω(�v) = 0}.

Before introducing additional definitions and the fundamental notion of
the de Rham complex, it might be useful to recall how functions of differ-
ential forms can be identified with standard functional spaces in two and
three space dimensions. Following Arnold et al. (2006b), the identification
is performed in a standard way by means of Euclidean vector proxies and
is reported in Table 16.1 (Boffi et al. 2009).

The de Rham complex is given by the chain

0 −−−→ H(d0; Ω) d0−−−→ H(d1; Ω) d1−−−→ · · · dn−1−−−→ H(dn; Ω) −−−→ 0.

The analogous complex when boundary conditions are considered is

0 −−−→ H0(d0; Ω) d0−−−→ H0(d1; Ω) d1−−−→ · · · dn−1−−−→ H0(dn; Ω) −−−→ 0.
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Table 16.1. Identification between differential
forms and vector proxies in R

2 and R
3.

Differential form Proxy representation
n = 2 n = 3

k = 0
d0 grad grad
tr∂Ω φ φ|∂Ω φ|∂Ω

H0(d0,Ω) H1
0 (Ω) H1

0 (Ω)
δ1 −div −div

k = 1

d1 rot curl
tr∂Ω u (u · t)|∂Ω n × (u × n)|∂Ω

H0(d1,Ω) H0(rot) H0(curl)
δ2

−→
rot curl

k = 2

d2 0 div
tr∂Ω q 0 (q · n)|∂Ω

H0(d2,Ω) L2
0(Ω) H0(div)

δ3 −grad

Since dk+1 ◦ dk = 0, the de Rham complex is a cochain complex, that is,
the kernel of dk+1 contains the range of dk. The quotient spaces between
the kernels and the ranges of the exterior derivatives are called cohomology
spaces and have finite dimension, which is related to the topology of Ω (the
dimension of the kth cohomology space is called kth Betti number). The
kth cohomology space is given by the set of harmonic differential forms:

Hk = {v ∈ H(dk; Ω) ∩ H0(δk; Ω) : dkv = 0, δkv = 0}

and

Hk
0 = {v ∈ H0(dk; Ω) ∩ H(δk; Ω) : dkv = 0, δkv = 0},

respectively.
In this survey, we are going to consider the case when the Betti numbers

corresponding to k different from 0 and n vanish. This essentially means
that the de Rham complex is exact2 and corresponds to the case when
the domain Ω is contractible. On the other hand, even if this assumption

2 The de Rham complex is exact in the case of trivial cohomology if, in the definition
of the first (last, respectively, when boundary conditions are considered) space, 0 is
replaced by R. We consider this modification in the rest of our survey.
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considerably simplifies the exposition, the results we are going to present
generalize to the case when the topology may not be trivial; the techniques
for dealing with the more general case correspond to those used, for instance,
in Arnold et al. (2006b).

For the discretization of the spaces of differential forms, we introduce
spaces of discrete differential forms Vk

h ⊂ H(dk; Ω) (k = 0, . . . , n). A typical
setting involves appropriate projection operators πk

h : H(dk; Ω) → Vk
h such

that the following diagram commutes:

R −−−→ H(d0; Ω) d0−−−→ H(d1; Ω) d1−−−→ · · · dn−1−−−→ H(dn; Ω) −−−→ 0

π0
h

� π1
h

� πn
h

�
R −−−→ V0

h
d0−−−→ V1

h
d1−−−→ · · · dn−1−−−→ Vn

h −−−→ 0.

We have an analogous diagram when boundary conditions are considered.
If Vk

h ⊂ H0(dk; Ω) (k = 0, . . . , n) and suitable projection operators πk
h :

H0(dk; Ω) → Vk
h are considered, then we use

0 −−−→ H0(d0; Ω) d0−−−→ H0(d1; Ω) d1−−−→ · · · dn−1−−−→ H0(dn; Ω) −−−→ R

π0
h

� π1
h

� πn
h

�
0 −−−→ V0

h
d0−−−→ V1

h
d1−−−→ · · · dn−1−−−→ Vn

h −−−→ R.
(16.1)

Another important tool we use is the Hodge decomposition, which can be
easily expressed by means of the cycles and the boundaries coming from the
de Rham complex (Arnold et al. 2006b, equation 2.18). Roughly speaking,
the Hodge decomposition states that every k-form u can be split as the sum
of three components:

u = dk−1α + δk+1β + γ,

where α and β are (k−1)- and (k+1)-forms, respectively, and γ ∈ Hk is a
harmonic k-form. More precisely, it turns out that exact (i.e., in the range
of dk−1) and co-exact (i.e., in the range of δk+1) k-forms are orthogonal in
L2(Ω,Λk): it follows that the orthogonal complement of exact and co-exact
k-forms consists of forms that are simultaneously closed (i.e., in the kernel of
dk) and co-closed (i.e., in the kernel of δk), that is, of harmonic k-forms. In
the particular case we consider, there are no harmonic forms and the Hodge
decomposition says that L2(Ω,Λk) can be presented as the direct sum of
dk−1(H(dk−1; Ω)) and δk+1(H0(δk+1; Ω)). A second Hodge decomposition
with different boundary conditions says

L2(Ω,Λk) = dk−1(H0(dk−1; Ω)) ⊕ δk+1(H(δk+1; Ω)). (16.2)
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17. The Hodge–Laplace eigenvalue problem

The main object of our analysis is the following symmetric variational eigen-
value problem: find λ ∈ R and u ∈ H0(dk; Ω) with u �= 0 such that

(dku, dkv) = λ(u,v) ∀v ∈ H0(dk; Ω). (17.1)

Taking v = u, it follows that λ cannot be negative. For k = 0, prob-
lem (17.1) reduces to the standard Laplace eigenvalue problem. For k ≥ 1,
which is the most interesting case, λ = 0 implies dku = 0, that is, u = dk−1α
for some α ∈ H0(dk−1; Ω). On the other hand, λ > 0 implies δku = 0, as
can be seen by taking v = dk−1α in (17.1) for an arbitrary α ∈ H0(dk−1; Ω)
and using the orthogonalities discussed when introducing the Hodge de-
composition (16.2). This means that intrinsic constraints are hidden in
the formulation of problem (17.1): either λ vanishes and is associated to
the infinite-dimensional eigenspace dk−1(H0(dk−1; Ω)) (that is, u is a closed
form), or the eigenfunctions u associated with positive values of λ are co-
closed forms (that is, δku = 0).

One motivation for the study of problem (17.1) comes from the fact that,
for k = 1 and n = 3, it corresponds to the Maxwell eigenvalue problem (5.3)
(see the identifications in Table 16.1). Moreover, for k = 0, problem (17.1)
reduces to the well-known eigenvalue problem for the Laplace operator.
Another interesting application is given for k = 2 and n = 3, where the
eigenvalue problem associated with the graddiv operator is obtained: this
operator plays an important role in the approximation of fluid–structure in-
teraction and acoustic problems (Bermúdez and Rodŕıguez 1994, Bermúdez
et al. 1995, Bathe, Nitikitpaiboon and Wang 1995, Gastaldi 1996, Boffi,
Chinosi and Gastaldi 2000b).

Remark 17.1. We have introduced the eigenvalue problem (17.1) in the
space H0(dk; Ω), which involves essential Dirichlet boundary conditions in
the sense that the definition of our functional space implies tr∂Ω u = 0.
The same problem can be considered in the space H(dk; Ω) and would cor-
respond to natural Neumann boundary conditions. Since the modifications
involved with the analysis of the Neumann problem are standard, we limit
our presentation to the Dirichlet problem.

Remark 17.2. The term ‘Dirichlet’ used in the previous remark needs a
more precise explanation. From the technical point of view, problem (17.1)
is a Dirichlet problem, since essential boundary conditions are imposed in
the space H0(dk; Ω) and we are sticking with this terminology.

On the other hand, a Dirichlet problem in the framework of differential
forms might correspond to a different type of boundary conditions when
translated to a more conventional language. This is sometimes the case
when using the proxy identification of Table 16.1 to reduce problem (17.1)
to standard mixed formulations. For instance, the case k = 2 and n = 3
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corresponds to an eigenvalue problem associated with the graddiv oper-
ator, which turns out to be equivalent to the Neumann problem for the
Laplace eigenvalue problem. A similar situation occurs in the case k = 1
and n = 2, which corresponds to the Maxwell eigenvalue problem in two
space dimensions with perfectly conducting boundary conditions u · t = 0
on the boundary. This problem is equivalent to the mixed formulation of
the Neumann–Laplace eigenvalue problem (u corresponds to the gradient
of the solution u rotated by the angle π/2, so that u · t means ∂u/∂n).

Problem (17.1) is strictly related to the Hodge–Laplace elliptic eigenvalue
problem (Arnold et al. 2006b, Arnold, Falk and Winther 2010): find ω ∈ R

and σ ∈ H0(dk; Ω) ∩ H(δk; Ω) with σ �= 0 such that

(dkσ, dkτ ) + (δkσ, δkτ ) = ω(σ, τ ) ∀τ ∈ H0(dk; Ω) ∩ H(δk; Ω). (17.2)

It is clear that all solutions to (17.2) have positive frequency ω > 0 (since Ω
is assumed to have trivial topology). Moreover, problem (17.2) is associated
with a compact solution operator; this important property is a consequence
of the compact embedding of H0(dk; Ω) ∩ H(δk; Ω) into L2(Ω,Λk) (Picard
1984).

It is possible to classify the solutions to (17.2) into two distinct families.
The first family corresponds to the solutions (λ,u) to (17.1) with positive
frequency (we have already observed that in this case δku = 0, so that it
is clear that (ω,σ) = (λ,u) is a solution to (17.2)). The second family is
given by forms σ ∈ H(δk; Ω) satisfying

(δkσ, δkτ ) = ω(σ, τ ) ∀τ ∈ H(δk; Ω)

with ω > 0, which implies, in particular, dkσ = 0.
We are interested in the first family of solutions to the Hodge–Laplace

eigenvalue problem (17.2) in the case k ≥ 1. From the above discussion, the
problem can be written in the following way: find λ ∈ R and u ∈ H0(dk; Ω)
with u �= 0 such that

(dku, dkv) = λ(u,v) ∀v ∈ H0(dk; Ω), (17.3a)

(u, dk−1q) = 0 ∀q ∈ H0(dk−1; Ω). (17.3b)

A natural mixed formulation associated with problem (17.3) can be con-
structed as follows: find λ ∈ R and u ∈ H0(dk; Ω) with u �= 0 such that, for
p ∈ H0(dk−1; Ω),

(dku, dkv) + (v, dk−1p) = λ(u,v) ∀v ∈ H0(dk; Ω), (17.4a)

(u, dk−1q) = 0 ∀q ∈ H0(dk−1; Ω). (17.4b)

Taking v = dk−1p in (17.4a) and using (17.4b) easily give dk−1p = 0, which
shows that all solutions to (17.4) solve (17.3) as well. Vice versa, it is clear
that a solution to (17.3) solves (17.4) with p = 0.
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In the case of Maxwell’s eigenvalue problem, formulation (17.4) is often
referred to as Kikuchi’s formulation (Kikuchi 1987).

It is clear that the value of p cannot be uniquely determined when k ≥ 2,
since if (λ,u,p) satisfies (17.4), then (λ,u,p + dk−2α) satisfies (17.4) as
well for any α ∈ H0(dk−2; Ω). It might be then interesting to consider the
following modified problem, which avoids the indeterminacy of p. Given
the space

Kδ
k−1 = {v ∈ H0(dk−1; Ω) ∩ H(δk−1; Ω) : δk−1v = 0},

find λ ∈ R and u ∈ H0(dk; Ω) with u �= 0 such that, for p ∈ Kδ
k−1,

(dku, dkv) + (v, dk−1p) = λ(u,v) ∀v ∈ H0(dk; Ω), (17.5a)

(u, dk−1,q) = 0 ∀q ∈ Kδ
k−1. (17.5b)

Formulation (17.5) is, however, not suited to the numerical approximation,
since it is not obvious how to introduce a conforming approximation of the
space Kδ

k−1. For this reason, we are going to use formulation (17.4); the
fact that p might not be uniquely determined by u is not a problem, since
we are interested in the eigenfunction u.

Following Boffi et al. (1999b), a second mixed formulation can be obtained
as follows. Given the space

Kd
k+1 = dk(H0(dk; Ω)) ⊂ H0(dk+1; Ω),

find λ ∈ R and s ∈ Kd
k+1 such that, for u ∈ H0(dk; Ω),

(u,v) + (dkv, s) = 0 ∀v ∈ H0(dk; Ω), (17.6a)

(dku, t) = −λ(s, t) ∀t ∈ Kd
k+1. (17.6b)

It is clear that any solution to problem (17.6) is associated with a positive
frequency λ > 0. Indeed, if λ = 0 then (17.6b) implies dku = 0, and taking
v = u in (17.6a) gives u = 0, which contradicts the existence of solutions
with vanishing frequency. Hence, (17.6b) gives the fundamental relation
s = −dku/λ, which yields the equivalence between (17.6a) and (17.3a).

Remark 17.3. The similar notations used for the spaces Kδ
k−1 and Kd

k+1

are compatible, in the sense that the space Kd
k+1 is made of functions in the

kernel of the operator dk+1, in analogy to the space Kδ
k−1, which contains

functions in the kernel of the operator δk−1.

The equivalence between the mixed formulations and problem (17.1) is
stated in the following proposition.

Proposition 17.4. If (λ,u) ∈ R × H0(dk; Ω) is a solution of (17.1) with
λ > 0, that is, if (λ,u) is a solution of (17.3), then (λ,u) is a solution
of (17.4), and there exists s ∈ Kd

k+1 such that (λ, s) is a solution of (17.6).
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Conversely, if (λ,u) ∈ R×H0(dk; Ω) is a solution of (17.4), then λ > 0 and
(λ,u) solves (17.3) and (17.1); if (λ, s) ∈ R × Kd

k+1 is a solution of (17.6)
for some u ∈ H0(dk; Ω), then (λ,u) solves (17.3) and (17.1).

18. Approximation of the mixed formulations

The aim of this section is to translate the abstract theory presented in Part 3
into the language of differential forms and to apply it to the approximation
of problems (17.4) and (17.6).

18.1. Approximation of problem (17.4)

With the notation introduced at the beginning of this part, the discretiza-
tion of problem (17.4) involves the spaces Vk

h ⊂ H0(dk; Ω) and Vk−1
h ⊂

H0(dk−1; Ω). The discrete formulation is as follows: find λh ∈ R and
uh ∈ Vk

h with uh �= 0 such that, for ph ∈ Vk−1
h ,

(dkuh, dkv) + (v, dk−1ph) = λh(uh,v) ∀v ∈ Vk
h, (18.1a)

(uh, dk−1q) = 0 ∀q ∈ Vk−1
h . (18.1b)

This is a mixed problem of the first kind, so we can analyse it with the
tools introduced in Section 13. According to the discussion of Section 13,
we can define a continuous operator T (1) : L2(Ω,Λk) → H0(dk; Ω) and a
discrete operator T (1)

h : L2(Ω,Λk) → Vk
h related to the first component of

the solution of the corresponding (continuous and discrete) source problems,
which we now write explicitly for the reader’s convenience. The continuous
source problem is as follows: given f ∈ L2(Ω,Λk), find u ∈ H0(dk; Ω) and
p ∈ H0(dk−1; Ω) such that

(dku, dkv) + (v, dk−1p) = (f ,v) ∀v ∈ H0(dk; Ω),

(u, dk−1q) = 0 ∀q ∈ H0(dk−1; Ω),

and its discrete counterpart is to find uh ∈ Vk
h and ph ∈ Vk−1

h such that

(dkuh, dkv) + (v, dk−1ph) = (f ,v) ∀v ∈ Vk
h,

(uh, dk−1q) = 0 ∀q ∈ Vk−1
h .

To apply the theory developed in Section 13, we need to show that

T (1) is compact from L2(Ω,Λk) to H0(dk; Ω).

From compactness of the embedding of H0(dk; Ω)∩H(δk; Ω) into L2(Ω,Λk),
it follows that T (1) is a compact operator from L2(Ω,Λk) into L2(Ω,Λk).
Moreover, it turns out that dk(T (1)L2(Ω,Λk)) is contained in H0(dk+1; Ω)∩
H(δk+1; Ω), which is compactly embedded into L2(Ω,Λk+1). This implies
that T (1) has the required compactness from L2(Ω,Λk) into H0(dk; Ω).
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In agreement with Section 13, we introduce some spaces. Let K be the
kernel of the operator δk, that is,

K = {v ∈ H0(dk; Ω) : (v, dk−1q) = 0 ∀q ∈ H0(dk−1; Ω)}
and its discrete counterpart

Kh = {v ∈ Vk
h : (v, dk−1q) = 0 ∀q ∈ Vk−1

h }.
Moreover, V0 and Q0 denote the spaces containing all solutions u and p, re-
spectively, of the continuous source problem (remember that the component
p of the solution might not be unique).

The three fundamental hypotheses of Theorem 13.4 are the ellipticity in
the kernel , the weak approximability of Q0 and the strong approximability
of V0 (see Definitions 13.1, 13.2, and 13.3). For the reader’s convenience,
we recall these properties with the actual notation.

The ellipticity in the kernel states that there exists α > 0 such that

(dkv, dkv) ≥ α(v,v) ∀v ∈ Kh. (18.2)

The weak approximability of Q0 means that there exists ρW (h), tending
to zero as h tends to zero, such that

sup
v∈Kh

(v, dk−1q)
‖v‖H(dk;Ω)

≤ ρW (h)‖q‖Q0 . (18.3)

The strong approximability of V0 means that there exists ρS(h), tending
to zero as h tends to zero, such that, for any u ∈ V0, there exists uI ∈ Kh

with
‖u − uI‖H(dk;Ω) ≤ ρS(h)‖u‖V0 . (18.4)

The next proposition is the analogue of Theorem 13.4 in the setting of
this section.

Proposition 18.1. If the ellipticity in the kernel (18.2), the weak approx-
imability of Q0 (18.3), and the strong approximability of V0 (18.4) hold true,
then there exists ρ(h), tending to zero as h tends to zero, such that

‖(T (1) − T
(1)
h )f‖H(dk;Ω) ≤ ρ(h)‖f‖L2(Ω,Λk) ∀f ∈ L2(Ω,Λk).

18.2. Approximation of problem (17.6)

The approximation of the second mixed formulation (17.6) reads as follows:
find λh ∈ R and sh ∈ dk(Vk

h) such that, for uh ∈ Vk
h,

(uh,v) + (dkv, sh) = 0 ∀v ∈ Vk
h, (18.5a)

(dkuh, t) = −λh(sh, t) ∀t ∈ dk(Vk
h). (18.5b)
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This is a problem of the second kind according to the classification of
Part 3; thus it can be analysed using the tools of Section 14.

The first step consists in the introduction of suitable operators T (2) :
L2(Ω,Λk+1) → L2(Ω,Λk+1) and T (2)

h : L2(Ω,Λk+1) → dk(Vk
h), by using the

second components of the solutions to the source problems corresponding
to (17.6) and (18.5), respectively. For the reader’s convenience, these source
problems are as follows: given g ∈ L2(Ω,Λk+1), find u ∈ H0(dk; Ω) and
s ∈ Kd

k+1 such that

(u,v) + (dkv, s) = 0 ∀v ∈ H0(dk; Ω),

(dku, t) = −(g, t) ∀t ∈ Kd
k+1,

and find uh ∈ Vk
h and sh ∈ dk(Vk

h) such that

(uh,v) + (dkv, sh) = 0 ∀v ∈ Vk
h,

(dkuh, t) = −(g, t) ∀t ∈ dk(Vk
h),

respectively.
The theory of Section 14 uses the following spaces: U0 ⊂ H0(dk; Ω) and

S0 ⊂ Kd
k+1 denote the spaces containing all solutions u and s, respectively,

of the continuous source problem when the datum g varies in L2(Ω,Λk+1);
the discrete kernel of the operator dk is given by

Kh = {v ∈ Vk
h : (dkv, t) = 0 ∀t ∈ dk(Vk

h)},

and in this particular case it is clearly included in the continuous kernel, that
is, dkv = 0 for all v ∈ Kh. In this setting, the three fundamental conditions
for the convergence of the eigensolution of (18.5) towards those of (17.6)
are the weak approximability of S0, the strong approximability of S0, and
the Fortid condition (see Definitions 14.1, 14.2 and 14.5, respectively).

The weak approximability requires the existence of ρW (h), tending to
zero as h tends to zero, such that

(dkv, t) ≤ ρW (h)‖v‖L2(Ω,Λk)‖t‖S0 . (18.6)

The strong approximability means that there exists ρS(h), tending to zero
as h tends to zero, such that, for any s ∈ S0, there exists sI ∈ dk(Vk

h) with

‖s − sI‖L2(Ω,Λk+1) ≤ ρS(h)‖s‖S0 . (18.7)

The last property is related to the Fortin operator, that is, an operator
Πh : U0 → Vk

h such that

(dk(u − Πhu), t) = 0 ∀u ∈ U0 ∀t ∈ dk(Vk
h),

‖Πhu‖L2(Ω,Λk) ≤ C‖u‖U0 ∀u ∈ U0.
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The Fortid property expresses the existence of ρF (h), tending to zero as h
tends to zero, such that

‖u − Πhu‖L2(Ω,Λk) ≤ ρF (h)‖u‖U0 . (18.8)

The next proposition is the analogue of Theorem 14.6 in the setting of
this section.

Proposition 18.2. If the weak approximability of S0 (18.6), the strong
approximability of S0 (18.7), and the Fortid property (18.8) hold true, then
there exists ρ(h), tending to zero as h tends to zero, such that

‖(T (2) − T
(2)
h )g‖L2(Ω,Λk+1) ≤ ρ(h)‖g‖L2(Ω,Λk+1).

19. Discrete compactness property

We introduce the approximation of problem (17.1) as follows: find λh ∈ R

and uh ∈ Vk
h ⊂ H0(dk; Ω) with u �= 0 such that

(dkuh, dkv) = λh(uh,v) ∀v ∈ Vk
h. (19.1)

The results of Section 18 can be used for the analysis of (19.1) with
the following strategy. Proposition 17.4 states that all solutions to prob-
lem (17.1) with positive frequency are in one-to-one correspondence with
the solutions of problems (17.4) and (17.6). If a similar result is true for the
discrete solutions of (19.1), (18.1) and (18.5), then we can use the theory
of the approximation of mixed formulations.

The equivalence of the discrete problems is true in the setting of the
de Rham diagram (16.1). Indeed, the much weaker assumption

dk−1(Vk−1
h ) ⊂ Vk

h

is sufficient for proving the following result, which is the discrete version of
Proposition 17.4.

Proposition 19.1. Let (λh,uh) ∈ R × Vk
h be a solution of (19.1) with

λh > 0; then (λh,uh) is the solution of (18.1) and there exists sh ∈ dk(Vk
h)

such that (λh, sh) is the solution of (18.5). Conversely, if (λh,uh) ∈ R×Vk
h is

a solution of (18.1), then λh > 0 and (λh,uh) solves (19.1); if (λh, sh) ∈ R×
dk(Vk

h) is a solution of (18.5) for some uh ∈ Vk
h, then (λh,uh) solves (19.1).

In this section we show how it is possible to introduce suitable condi-
tions that ensure the convergence of the solutions of (19.1) towards those
of (17.1). The main condition is the so-called discrete compactness prop-
erty. Given a finite-dimensional subspace Vk

h of H0(dk; Ω), we introduce the
subspace of discretely co-closed k-forms,

Zk
h = {v ∈ Vk

h : (v,w) = 0 ∀w ∈ Vk
h with dkw = 0}.

In the case of the de Rham diagram (16.1) and trivial cohomologies, the
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space Zk
h can also be expressed in terms of orthogonalities with respect

to dk−1(Vk−1
h ); more precisely,

Zk
h = {v ∈ Vk

h : (v, dk−1q) = 0 ∀q ∈ Vk−1
h }.

If the cohomologies are not trivial, then the two descriptions of Zk
h differ by

a finite-dimensional space; in particular, the following definition can easily
be proved invariant from this choice.

Definition 19.2. We say that the discrete compactness property holds for
a family {Vk

h}h of finite-dimensional subspaces of H0(dk; Ω) if any sequence
{un} ⊂ H0(dk; Ω), with un ∈ Zk

hn
, which is bounded in H0(dk; Ω) contains

a subsequence which converges in L2(Ω,Λk).

Remark 19.3. The definition of discrete compactness is often found in
the literature with the following formulation: . . . the discrete compactness
property holds . . . if any sequence {uh}, with uh ∈ Zk

h, which is bounded
in H0(dk; Ω) contains a subsequence which converges in L2(Ω,Λk). Here we
make it explicit that the sequence un refers to an arbitrary index choice
hn. This is needed to avoid abstract situations occurring in cases such as
when the family {Vk

h}h comprises good spaces interspersed with an infinite
number of bad spaces. Without extracting the first arbitrary subsequence
associated with hn, the negative effect of the bad spaces might be annihilated
by a suitable subsequence choice (Christiansen 2009).

It can easily be shown that the limit u of the subsequence appearing in
Definition 19.2 is in H0(dk; Ω), and that δku = 0 whenever dk−1(Vk−1

h )
provides a good approximation of dk−1(H0(dk−1; Ω)). This motivates the
following definition.

Definition 19.4. We say that the strong compactness property holds for
a family {Vk

h}h of finite-dimensional subspaces of H0(dk; Ω) if it satisfies the
discrete compactness property, and the limit u of the subsequence appearing
in Definition 19.2 is a co-closed form, that is, δku = 0.

Remark 19.5. It is worth noticing that, in general, the strong discrete
compactness property is not ‘much stronger’ than the standard discrete com-
pactness property. Indeed, if the space sequence {Vk−1

h } has good approx-
imation properties and the discrete compactness property holds for {Vk

h},
then passing to the limit in the orthogonality (v, dk−1q) = 0 which defines
the space Zk

h gives the strong discrete compactness.

The main result of this section is stated in the next theorem. We con-
sider k-forms in H0(dk; Ω) and a sequence of finite element spaces Vk

h ⊂
H0(dk; Ω). Moreover, we suppose that we can write problems (17.4) and
(17.6), that is, we have H0(dk−1; Ω), Kd

k+1, and their approximations Vk−1
h

and dk(Vk
h).
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Theorem 19.6. The following three sets of conditions are equivalent.

(i) The strong discrete compactness property (see Definition 19.4) and
the following standard approximation property: for any v ∈ H0(dk; Ω)
with δkv = 0, there exists a discrete sequence {vh} ⊂ Vk

h such that

‖v − vh‖H(dk;Ω) → 0 as h→ 0.

(ii) The ellipticity in the kernel (18.2), the weak approximability of Q0

(18.3), and the strong approximability of V0 (18.4).

(iii) The weak approximability of S0 (18.6), the strong approximability of
S0 (18.7), and the existence of a Fortin operator satisfying the Fortid
property (18.8).

Proof. The proof is a generalization of the result of Boffi (2007, Theorem 3)
where it is split into a series of propositions. We report here the main
arguments for the sake of completeness.

Let us start with the implication (i) ⇒ (ii).
The strong discrete compactness property implies the ellipticity in the

kernel by the generalization of Monk and Demkowicz (2001, Corollary 4.2).
The strong discrete compactness property implies the weak approxima-

bility of Q0 from the following argument. By contradiction, let {qh} ⊂ Q0

be a sequence such that there exists {vh} ⊂ Kh with

‖qh‖Q0 = 1,

‖vh‖H(dk;Ω) = 1,

(vh, dk−1qh) ≥ ε0 > 0.

From the boundedness of {qh} and the strong discrete compactness, we can
extract subsequences (denoted with the same notation) {qh} and {vh}, and
there exist q ∈ H0(dk−1; Ω) and v ∈ L2(Ω,Λk) such that qh ⇀ q weakly in
H0(dk−1; Ω) and vh → v strongly in L2(Ω,Λk). Moreover, δkv = 0. Passing
to the limit gives

(v, dk−1q) ≥ ε0,

which contradicts δkv = 0.
The strong approximability of V0 is a consequence of (i) by the following

argument. By contradiction we assume that the strong approximability of
V0 is not satisfied. Let {un} ⊂ V0 be a sequence such that

‖un‖V0 = 1,

inf
vhn∈Khn

‖un − vhn‖H(dk;Ω) ≥ ε0 > 0 ∀n,

where hn is a sequence of mesh sizes tending to zero. From the compact
embedding of V0 in H0(dk; Ω), it follows that up to a subsequence there
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exists u ∈ H0(dk; Ω) such that un → u in H(dk; Ω). Moreover, we have
δku = 0. We reach a contradiction if we are able to approximate u in
H(dk; Ω) with a sequence in Khn . From the approximation property in (i)
there exists uhn ⊂ Vk

hn
such that uhn → u in H(dk; Ω). We perform a

discrete Hodge decomposition,

uhn = dk−1phn + uI
hn
,

as follows. We take phn ∈ Vk−1
hn

such that

(dk−1phn , dk−1q) = (uhn , dk−1q) ∀q ∈ Vk−1
hn

(this phn is not unique if k > 1), and define uI
hn

by difference. By definition
{uI

hn
} is bounded in H(dk; Ω) and belongs to Zk

hn
, so that up to a subse-

quence it converges in L2(Ω,Λk) to a limit u∗ satisfying δku∗ = 0. Since
{uI

hn
} belongs to Khn , it is enough to prove that u = u∗. We have that

u−u∗ = dk−1p, with p ∈ H0(dk−1; Ω) and dk−1phn → dk−1p in L2(Ω,Λk).
On the other hand, δk(u − u∗) = 0 and u − u∗ = dk−1p imply u − u∗ = 0.

We now consider the implication (ii) ⇒ (iii).
The hypotheses in (ii), according to Proposition 18.1, imply that the

eigensolutions of (18.1) converge towards those of (17.4). From the equiva-
lences stated in Propositions 17.4 and 19.1, it follows that the eigensolutions
of (18.5) converge towards those of (17.6) as well. Hence, the conditions in
(iii) are satisfied since they are necessary for the norm convergence of T (2)

h

to T (2) in L(L2(Ω,Λk+1),Kd
k+1) (Boffi et al. 1997, Theorem 7).

Finally, let us show that (iii) ⇒ (i).
First we prove that (iii) implies the strong discrete compactness property.

Let {un} be a sequence as in Definition 19.2. It follows that un satisfies

(un,v) + (dkv, sn) = 0 ∀v ∈ Vk
hn

(19.2)

for a suitable sn∈dk(Vk
hn

). We define u(n)∈H0(dk; Ω) and s(n)∈Kd
k+1 by

(u(n),v) + (dkv, s(n)) = 0 ∀v ∈ H0(dk; Ω), (19.3a)

(dku(n), t) = (dkun, t) ∀t ∈ Kd
k+1. (19.3b)

In particular, {u(n)} is bounded in H0(dk; Ω)∩H(δk; Ω), which is compact
in L2(Ω,Λk), so that there exists a limit u with δku = 0 such that u(n) →
u in L2(Ω,Λk) (up to a subsequence). We can show the strong discrete
compactness property if we can prove that un tends to u in L2(Ω,Λk).
The conditions in (iii) guarantee the norm convergence of T (2)

h to T (2) in
L(L2(Ω,Λk+1),L2(Ω,Λk+1)), which implies

‖s(n) − sn‖L2(Ω,Λk+1) ≤ ρ(n)‖dkun‖L2(Ω,Λk+1),

with ρ(n) tending to zero as n tends to infinity. Choosing v = u(n) − un
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in (19.3) gives
(u(n),u(n) − un) = 0,

and the difference between the first equation in (19.3) and (19.2) leads to

−(u(n) − un,v) + (dkv, s(n) − sn) = 0 ∀v ∈ Vk
hn
.

The last two equations and the choice v = un give

‖u(n) − un‖2
L2(Ω,Λk) ≤ ‖s(n) − sn‖L2(Ω,Λk+1)‖dkun‖L2(Ω,Λk+1)

≤ ρ(n)‖dkun‖2
L2(Ω,Λk+1),

which implies un → u in L2(Ω,Λk). Finally, the approximation property
in (i) follows from the fact that (iii) implies the correct approximation of
the eigenfunctions of (17.6), which is equivalent to (17.4) in the spirit of
Proposition 17.4. Since the eigenfunctions are a dense space in the set of
functions v in H(dk; Ω) with δkv = 0, the approximation property follows
from the approximation of the eigenfunctions.

The main consequence of Theorem 19.6 is that the discrete compactness
property and standard approximabilities are designated as the natural con-
ditions for good convergence of the eigensolutions of (19.1) towards those
of (17.1). In the next section we are going to show how this theory can be
applied to the approximation of Maxwell’s eigenvalue problem.

20. Edge elements for the approximation of Maxwell’s
eigenvalue problem

We conclude this part with a discussion about the relationships between
the results presented so far and the approximation of Maxwell’s eigenvalue
problem, which has been the main motivation for the author’s study of
the finite element approximation of eigenvalue problems in the setting of
differential forms.

In Section 5 we recalled the definition of Maxwell’s eigenvalue problem
and presented some numerical examples concerning its approximation. We
explained how edge finite elements are the correct choice for the discretiza-
tion of problem (5.3), which is a particular case of problem (19.1) (k = 1).
It was also discussed that the direct use of standard (nodal) finite element
produces unacceptable results (see, in particular, Figures 5.2, 5.3, 5.4, and
Table 5.3 with Figures 5.6 and 5.7). Some modifications of problem (5.3)
are available that allow the use of standard finite elements (Costabel and
Dauge 2002) or of standard finite elements enriched with bubble functions
(Bramble, Kolev and Pasciak 2005).

In this section we review some basic literature about edge finite elements
and show how Theorem 19.6 applies to this situation. We also discuss the
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difference between the discrete compactness property (see Definition 19.2)
and the strong discrete compactness property (see Definition 19.4).

Edge finite elements were introduced by Nédélec (1980, 1986). The entire
family of mixed finite elements is often referred to as the Nédélec–Raviart–
Thomas family, since Raviart–Thomas elements (Raviart and Thomas 1977)
also belong to this family. Other families are available: among them we
recall Brezzi–Douglas–Marini elements (Brezzi et al. 1985, 1986), Brezzi–
Douglas–Fortin–Marini elements (Brezzi et al. 1987a, 1987b), and the hp
adaptive family presented by Demkowicz and co-workers (Vardapetyan and
Demkowicz 1999, Demkowicz, Monk, Vardapetyan and Rachowicz 2000b).
The merit of linking edge elements to the de Rham complex comes from the
fundamental work of Bossavit (1988, 1989, 1990, 1998). The idea is intrinsi-
cally related to the concept of Whitney forms (Whitney 1957) and it should
be acknowledged that lowest-order edge finite elements are often referred to
as Whitney elements. The de Rham complex is a more complete viewpoint
than the so-called commuting diagram property (Douglas and Roberts 1982),
which was introduced in the framework of mixed approximations. Many
authors have discussed the relationship between finite elements for elec-
tromagnetic problems and differential forms. Among others, the following
papers and the references therein give an idea of the underlying discussion:
Hiptmair (1999a, 2002), Gross and Kotiuga (2004), Christiansen (2007) and
Boffi (2001). A deep understanding of the subject which leads to the for-
malism of the finite element exterior calculus is presented in the following
works: Arnold (2002) and Arnold et al. (2006a, 2006b, 2010).

Proposition 17.4 in the context of Maxwell’s eigenvalue problem states
that there are three equivalent formulations.

(1) The standard Maxwell eigenvalue problem: find λ ∈ R and u ∈
H0(curl; Ω) with u �= 0 such that

(µ−1 curl u, curl v) = λ(εu,v) ∀v ∈ H0(curl; Ω).

(2) The mixed formulation of the first type (Kikuchi 1987): find λ ∈ R

and u ∈ H0(curl; Ω) with u �= 0 such that, for p ∈ H1
0 (Ω),

(µ−1 curl u, curl v) + (εv,grad p) = λ(εu,v) ∀v ∈ H0(curl; Ω),

(εu,grad q) = 0 ∀q ∈ H1
0 (Ω).

(3) The mixed formulation of the second type (Boffi et al. 1999b): find
λ ∈ R and s ∈ Σ with s �= 0 such that, for u ∈ H0(curl; Ω),

(εu,v) + (µ−1/2 curl v, s) = 0 ∀v ∈ H0(curl; Ω),

(µ−1/2 curl u, t) = −λ(s, t) ∀t ∈ Σ,

with Σ = µ−1/2 curl(H0(curl; Ω)).



110 D. Boffi

From Proposition 19.1 the equivalence holds at the discrete level as well. We
would like to point out that, from the computational point of view, the stan-
dard formulation is the most convenient and is the one commonly used. The
two mixed formulations have essentially been introduced for the theoretical
analysis of the finite element approximation. Some comments on the com-
putational issues can be found, for instance, in Simoncini (2003) and Arbenz
and Geus (1999). For multigrid solvers, the reader is referred to Hiptmair
(1999b), Arnold, Falk and Winther (2000), Reitzinger and Schöberl (2002),
and to the references therein.

Theorem 19.6 is the main tool for the analysis of the problem we are
interested in. In particular, conditions stated in items (i), (ii) and (iii)
refer to the standard formulation, the first mixed formulation, and the sec-
ond mixed formulation, respectively. In the literature, conditions (i) and
(iii) have mostly been used. Condition (i) was used in Boffi, Conforti and
Gastaldi (2006a) for the analysis of a modification of Maxwell’s eigenvalue
problem for the approximation of band gaps in photonic crystals.

The case of a two-dimensional domain Ω ⊂ R
2 can easily be analysed.

For instance, using the second mixed formulation and the equivalence of
rot and div operators, we are led to the problem of approximating the
eigensolutions of the Neumann problem for the Laplace operator in mixed
form with Raviart–Thomas elements (see Section 5.1). The analysis of this
problem was performed by Falk and Osborn (1980) (see also Demkowicz,
Monk, Schwab and Vardapetyan (2000a)).

For a three-dimensional domain Ω ⊂ R
3, the discrete compactness prop-

erty was proved by Kikuchi (1989) in the case of lowest-order tetrahedral
elements. The convergence of the h method for practically all known fami-
lies of edge finite elements follows from the arguments of Boffi (2000), where
the Fortid condition, which makes it possible to use the second mixed for-
mulation (see Theorem 19.6(iii)), was proved. A direct proof of convergence
of the eigensolutions, which makes use of the discrete compactness prop-
erty and of the abstract results of Anselone (1971), was given by Monk and
Demkowicz (2001) under the assumption of quasi-uniformity of the mesh
(see also Ciarlet and Zou (1999), Hiptmair (2002), Monk (2003) and Costa-
bel and Dauge (2003)).

In the work of Caorsi, Fernandes and Raffetto (2000) (see also Caorsi,
Fernandes and Raffetto (2001)) it was proved that the discrete compactness
property is a necessary and sufficient condition for good convergence of the
eigensolutions of Maxwell’s system. In that paper the strong discrete com-
pactness is not explicitly addressed, but suitable approximation properties
are considered (see Remark 19.5)

All the results presented so far fit very well into the theoretical setting of
Arnold et al. (2010), where a more general theory is developed for the anal-
ysis of the approximation of the Hodge–Laplace eigenvalue problem (17.2).
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In that very recent paper it has been proved that a sufficient condition for
the convergence of the eigensolution is the existence of projection operators
that are uniformly bounded in L2(Ω,Λk). A construction of such operators
is presented (for any admissible k and n), which is performed by means
of a suitable extension–regularization procedure. It is also shown that the
existence of such projections implies the Fortid property and the discrete
compactness property.

In practical applications the computational domains and the material
properties related to Maxwell’s cavities are such that the eigensolutions
often correspond to non-smooth eigenfunctions. It has been observed that
in such cases it may be convenient to use anisotropic elements (Nicaise
2001, Buffa, Costabel and Dauge 2005), suitable spaces that take care of the
singular functions (Assous, Ciarlet and Sonnendrücker 1998), or an adaptive
hp strategy (Demkowicz 2005, Ainsworth and Coyle 2003, Hiptmair and
Ledger 2005).

It would be nice to construct suitable projections which are bounded in
L2(Ω,Λk), uniformly in p, so that the theory of Arnold et al. (2010) can be
applied to the analysis of the p and perhaps of the hp version of edge finite
elements. Unfortunately, such projections are not yet available, and it is
not clear whether they exist.

The first result concerning the hp version of edge finite elements was
by Boffi, Demkowicz and Costabel (2003), where the triangular case was
analysed and the discrete compactness property was proved modulo a con-
jectured estimate, which was only demonstrated numerically. The first rig-
orous proof of the discrete compactness property for the hp version of edge
elements was by Boffi, Costabel, Dauge and Demkowicz (2006b) in the case
of rectangular meshes allowing for one-irregular hanging nodes. It is inter-
esting to note that the plain p version of edge finite elements (pure spectral
elements) had never been analysed before that paper, even though there
was evidence of good performance (Wang, Monk and Szabo 1996). Finally,
a fairly general result concerning the p version of edge finite elements can be
found in Boffi et al. (2009), where the discussion is performed in the frame-
work of differential forms, and where the role of the discrete compactness
property has also been studied.

We conclude this presentation with a comment on the role of the dis-
crete compactness property and the strong discrete compactness property.
In particular, we want to emphasize the differences between the two con-
ditions (see Boffi (2007, Section 5) and Boffi et al. (2009, Section 2.3)).
The behaviour we are going to describe is strictly related to the concepts of
spectral correctness and spurious-free approximation introduced in Caorsi
et al. (2000, Section 4). We go back to the notation of the h version of
finite elements, but our comments apply to the p and hp versions as well.
It is clear that the main difficulties in the approximation of problem (17.1)
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come from the discretization of the infinite-dimensional kernel that occurs
for k ≥ 1. The discrete compactness property is related to the spectrally
correct approximation, that is, all continuous eigenvalues (including the
zero frequency) are approximated by a correct number of discrete eigenval-
ues and the corresponding eigenspaces are well approximated. For k = 0,
in the case of a compact resolvent, this is an optimal notion, and implies
that the numerical scheme is capable of providing a good approximation
of the eigenmodes. For k ≥ 1, however, the eigenvalues approximating the
infinite-dimensional kernel may pollute the whole spectrum, and the numer-
ical scheme becomes unusable. Moreover, Caorsi et al. (2000) showed that,
if H0(dk; Ω) is well approximated by Vk

h, then the eigenvalues approximat-
ing the zero frequency are confined to a region close to zero, which can be
made arbitrarily small, for sufficiently small h. The big improvement given
by strong discrete compactness (or, analogously, by discrete compactness
and completeness of the discrete kernel (CDK) of Caorsi et al. (2000)), con-
sists in the conclusion that the discrete frequencies approximating zero are
exactly at zero, meaning that all non-physical frequencies are well separated
from the rest of the spectrum.
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R. G. Durán, C. Padra and R. Rodŕıguez (2003), ‘A posteriori error estimates
for the finite element approximation of eigenvalue problems’, Math. Models
Methods Appl. Sci. 13, 1219–1229.

R. S. Falk and J. E. Osborn (1980), ‘Error estimates for mixed methods’, RAIRO
Anal. Numér. 14, 249–277.

G. J. Fix, M. D. Gunzburger and R. A. Nicolaides (1981), ‘On mixed finite element
methods for first-order elliptic systems’, Numer. Math. 37, 29–48.

M. Fortin (1977), ‘An analysis of the convergence of mixed finite element methods’,
RAIRO Anal. Numér. 11, 341–354.

P. Gamallo (2002), Contribución al estudio matemático de problemas de simulación
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atika 2, 37–45.

Y. Wang, P. Monk and B. Szabo (1996), ‘Computing cavity modes using the p
version of the finite element method’, IEEE Trans. Magnetics 32, 1934–1940.

T. Warburton and M. Embree (2006), ‘The role of the penalty in the local discontin-
uous Galerkin method for Maxwell’s eigenvalue problem’, Comput. Methods
Appl. Mech. Engrg 195, 3205–3223.

B. Werner (1981), Complementary variational principles and nonconforming Trefftz
elements. In Numerical Treatment of Differential Equations, Vol. 3: Clausthal
1980, Vol. 56 of Internat. Schriftenreihe Numer. Math., Birkhäuser, Basel,
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